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with FRP establishes the art and science of 

strengthening design of reinforced concrete 

with fiber-reinforced polymer (FRP) beyond the 

abstract nature of the design guidelines from 

Canada (ISIS Canada 2001), Europe (FIB Task 

Group 9.3 2001), and the United States (ACI 

440.2R-08). Evolved from thorough class notes 

used to teach a graduate course at Kansas 

State University, this comprehensive textbook: 

•	 Addresses material characterization, flexural 
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•	 Discusses the installation and inspection 

of FRP as externally bonded (EB) or near-

surface-mounted (NSM) composite systems 

for concrete members
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mode independently, with comparisons to actual experimental capacity

•	 Presents innovative design aids based on ACI 440 code provisions and hand 

calculations for confinement design interaction diagrams of columns

•	 Includes extensive end-of-chapter questions, references for further study,  

and a solutions manual with qualifying course adoption

Delivering a detailed introduction to FRP strengthening design, Strengthening Design 
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Series Preface
Half a century after their commercial introduction, composite materials are of 
widespread use in many industries. Applications such as aerospace, windmill 
blades, highway bridge retrofit, and many more require designs that assure safe 
and reliable operation for 20 years or more. Using composite materials, virtually 
any property, such as stiffness, strength, thermal conductivity, and fire resis-
tance, can be tailored to the user’s needs by selecting the constituent materials, 
their proportion and geometrical arrangement, and so on. In other words, the 
engineer is able to design the material concurrently with the structure. Also, 
modes of failure are much more complex in composites than in classical materi-
als. Such demands for performance, safety, and reliability require that engineers 
consider a variety of phenomena during the design. Therefore, the aim of the 
Composite Materials: Design and Analysis book series is to bring to the design 
engineer a collection of works written by experts on every aspect of composite mate-
rials that is relevant to their design.

The variety and sophistication of material systems and processing techniques 
have grown exponentially in response to an ever-increasing number and type of 
applications. Given the variety of composite materials available as well as their con-
tinuous change and improvement, understanding of composite materials is by no 
means complete. Therefore, this book series serves not only the practicing engineer, 
but also the researcher and student who are looking to advance the state of the art 
in understanding material and structural response and developing new engineering 
tools for modeling and predicting such responses.

Thus, the series is focused on bringing to the public existing and developing 
knowledge about the material–property relationships, processing–property rela-
tionships, and structural response of composite materials and structures. The series 
scope includes analytical, experimental, and numerical methods that have a clear 
impact on the design of composite structures.
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Preface
The idea of writing this book emerged from a lack of detailed textbook treatments 
on strengthening design of reinforced concrete members with fiber-reinforced poly-
mer (FRP) despite the large volume of research literature and practical applications 
that have been contributed since 1987. Even though two attempts to use glass-fiber-
reinforced polymer (GFRP) to strengthen concrete members were made in Europe 
and the United States in the 1950s and 1960s, the technique wasn’t successfully 
applied until 1987, when Ur Meier first strengthened concrete beams with carbon-
fiber-reinforced-polymer (CFRP) laminates.

Knowledge in the area of FRP strengthening has matured, culminating with 
the introduction of specific design guidelines in Canada (ISIS Canada 2001), 
Europe (FIB Task Group 9.3 2001), and the United States (ACI 440.2R-02), the 
latter of which was significantly improved after six years in 2008 (ACI 440.2R-
08). Today’s structural engineer is entitled to a detailed textbook that estab-
lishes the art and science of strengthening design of reinforced concrete with 
FRP beyond the abstract nature of design guidelines. ACI 440.2R-08 provides 
better guidance than what is typically provided in codes of practice through its 
“design example” sections. Nevertheless, a textbook that treats the subject of FRP 
strengthening design with more depth is really needed to introduce it to the civil 
engineering curriculum.

This textbook has evolved from thorough class notes established to teach a grad-
uate course on “strengthening design of reinforced concrete members with FRP” 
in spring of 2012 at Kansas State University. The course was widely attended by 
18 on-campus senior level, master’s level, and doctoral students as well as five 
distance-education students comprised of practicing engineers pursuing an MS 
degree. The course included four sets of detailed homework assignments, two term 
exams, and a research and development project for individuals or teams of two stu-
dents, depending on the project scope and deliverables, evaluated through project 
proposals.

Even though the course covered a wide range of topics—from material charac-
terization, flexural strengthening of beams and slabs, shear strengthening of beams, 
and confinement strengthening of columns, in addition to installation and inspection 
of FRP as externally bonded (EB) or near-surface-mounted (NSM) composite sys-
tems to concrete members—FRP anchorage, FRP strengthening in torsion, and FRP 
strengthening of prestressed members were left out of the scope of this first book 
edition. However, it is the intention of the author to add these and other topics to 
subsequent editions to allow for more selective treatments or more advanced courses 
to be offered based on this textbook.

The author would like to acknowledge his former graduate student Mr. Augustine 
F. Wuertz, who helped type a major part of the manuscript while at Kansas State 
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University. The author would also like to acknowledge Tamara Robinson for edit-
ing several chapters of this book as well as the Office of Research and Graduate 
Programs in the College of Engineering at Kansas State University for providing 
this editing service. The author would also like to thank Kansas State University for 
supporting his sabbatical leave during which this book was finalized.

Hayder A. Rasheed
Manhattan, Kansas, USA

Spring 2014
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1 Introduction

1.1  ADVANCEMENTS IN COMPOSITES

Fiber-reinforced polymer (FRP) composites are relatively new compared to conven-
tional construction materials. These composites are manufactured by combining small-
diameter fibers with polymeric matrix at a microscopic level to produce a synergistic 
material. FRP composites have been considered in aerospace applications since the 
mid-1950s, when they were used in rocket motor casings (Ouellete, Hoa, and Sankar 
1986). Because of their light weight and design versatility, they have since entered struc-
tural systems in aerospace, automotive, marine, offshore drilling, and civil engineering 
applications, in addition to sporting goods such as skiing equipment, commercial boats, 
golf clubs, and tennis rackets (Jones 1975; Gibson 1994; ACI 440R-96 1996).

Typical structural elements made of advanced composites in fighter aircraft 
include horizontal and vertical stabilizers, flaps, wing skins, and various control 
surfaces, totaling weight savings of 20% (Gibson 1994). Other important structural 
elements are helicopter rotor blades. As for the use of advanced composites in com-
mercial aircraft, they enter into the manufacturing of up to 30% of the external 
surface area (Gibson 1994). However, currently they are only conservatively used in 
secondary structures in large aircraft.

Advanced composites are used in a variety of additional industries as well. 
Structural systems constructed of graphite/epoxy composites in space shuttles 
include cargo bay doors and the solid rocket booster motor case (Gibson 1994). 
Typical structural elements made of composites in the automotive industry include 
leaf springs, body panels, and drive shafts (Gibson 1994). Typical pultruded struc-
tural shapes are used in lightweight industrial building construction to offer corrosion 
and electrical/thermal insulation advantages. Another use of advanced composites in 
civil engineering applications is in the building of lightweight, all-composite, hon-
eycomb-core decks for rapid replacement of short-span bridges (Kalny, Peterman, 
and Ramirez 2004). Glass FRP (GFRP) reinforcing bars were produced using a pul-
trusion process created by Marshall Vega Corporation for use with polymer-based 
concrete in the late 1960s (ACI 440R-96), and these bars continue to improve in 
their characteristics, such as the addition of helically wound GFRP deformations for 
enhanced bonding to concrete.

1.2  INFRASTRUCTURE UPGRADE

The transportation infrastructure in the United States and worldwide is aging due to 
material deterioration and capacity limitations. Since complete rebuilding of such 
infrastructure requires a huge financial commitment, alternatives of prioritized 
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strengthening and repair need to be implemented. One of the earliest techniques 
for repair and strengthening of concrete members, dating back to the mid-1970s, 
involved the use of epoxy-bonded external steel plates (Dussek 1980). However, in 
the mid-1980s, durability studies revealed that corrosion of external steel plates is a 
restrictive factor for widespread usage of this technique in external exposure (Van 
Gemert and Van den Bosch 1985).

A revolutionary advancement in the technique of external strengthening 
occurred when Meier replaced external steel plates with external carbon FRP 
(CFRP) plates in 1987. FRP is resistant to corrosion and has high strength-to-
weight and high stiffness-to-weight ratios that provide efficient designs and ease 
of construction. FRP also has excellent fatigue characteristics and is electro-
magnetically inert. Accordingly, it is a viable replacement to steel in external 
strengthening applications. Since 1987, research in FRP strengthening tech-
niques has developed an extensive volume of literature proving the effective-
ness of the application. The ACI 440 Committee on Fiber Reinforced Polymer 
Reinforcement has twice reported on state-of-the-art advancements (ACI 440R-
96; ACI 440R-07 2007). The same committee has produced two design docu-
ments for FRP externally bonded systems for strengthening applications (ACI 
440.2R-02; ACI 440.2R-08 2008). The technology has matured to the point that it 
can be introduced to the structural engineering curriculum through the develop-
ment of courses and textbooks.

1.3 � BEHAVIOR OF STRENGTHENED REINFORCED 
CONCRETE BEAMS IN FLEXURE

Shallow beams are typically strengthened in flexure by externally bonding FRP 
plates or sheets on the tension face or soffit of the member, as shown in Figure 1.1. 
The fibers are oriented along the beam axis in the state-of-the-art application. 

FIGURE 1.1  Strengthening the soffit of inverted reinforced concrete beam with CFRP.
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Full composite action between the beam and FRP is usually assumed. However, 
this perfect bond typically depends on the shear stiffness of the interface adhe-
sive (Rasheed and Pervaiz 2002). Most resin adhesives yield excellent bond char-
acteristics with concrete and FRP, leading to perfect composite action. On the 
other hand, some resin adhesives have low lap shear stiffness, leading to bond 
slip between FRP and the concrete beam, thus reducing the composite action 
(Rasheed and Saadatmanesh 2002; Pervaiz and Ehsani 1990). With full compos-
ite action, glass FRP (GFRP) and aramid FRP (AFRP) do not increase the initial 
stiffness of the beam due to their relatively low modulus along the fiber direction. 
On the other hand, carbon FRP (CFRP) slightly increases the initial stiffness 
of the beam due to its high modulus along the fiber direction. Accordingly, this 
application is not used to stiffen the beams; instead, it is used to strengthen the 
beam due to the high strength of FRP materials available in practice, as shown 
in Figure 1.2.

Flexural failure modes may be classified as

	 1.	FRP rupture failure after yielding of primary steel reinforcement. This fail-
ure mode typically takes place in lightly reinforced, lightly strengthened 
sections (Arduini, Tommaso, and Nanni [1997], Beam B2).

	 2.	Concrete crushing failure after yielding of primary steel reinforcement. 
This failure mode typically occurs in moderately reinforced, moderately 
strengthened sections (Saadatmanesh and Ehsani [1991], Beam A).

	 3.	Cover delamination failure primarily occurring after yielding of steel rein-
forcement. This failure mode initiates at the FRP curtailment due to stress 
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FIGURE 1.2  Response of unstrengthened and CFRP-strengthened identical beams show-
ing limited stiffening compared to strengthening.
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concentration at the plate or sheet tip. Once cracking starts at an angle, it 
changes to a horizontal crack parallel to steel reinforcement at the level of 
primary steel because the steel stirrups inside the beam arrest the inclined 
crack. The FRP and the entire concrete cover delaminates (e.g., Arduini, 
Tommaso, and Nanni [1997], Beam A3 and A4).

	 4.	Plate or sheet debonding along the interface plane due to the intermedi-
ate crack mechanism typically after yielding of primary steel reinforce-
ment when the flexural cracks widen. The horizontal crack occurs along 
the adhesive layer or parallel to it within the concrete cover. This failure 
mode is especially applicable to beams with end U-wrap anchorage, thus 
delaying failure in item 3 (e.g., Arduini, Tommaso, and Nanni [1997], 
Beam B3).

	 5.	Concrete crushing failure for over-reinforced beams or cover delamination 
failure in beams with short FRP plates prior to primary steel yielding (e.g., 
Fanning and Kelly [2001], Beam F10).

Shallow beams may also be strengthened with near-surface-mounted (NSM) 
bars. This strengthening reinforcement is typically made of FRP bars or FRP tape 
inserted in near-surface cut grooves and then sealed with resin adhesive that fills the 
groove surrounding the bar or tape, as shown in Figure 1.3 (Rasheed et al. 2010).

FRP in this application behaves similarly to externally bonded FRP plates and 
sheets. However, failure modes are typically limited to

	 1.	FRP rupture after yielding of primary steel.
	 2.	Concrete crushing after yielding of primary steel.
	 3.	Concrete crushing before yielding of primary steel

(a)

CFRP strips (2 
per groove) 2

in. c/c

CFRP strips (1
per groove) 

2 in.

(b)

2.5 in. each

16 in. NSM stainless
steel (3 # 4

bars) 

CFRP stirrups
(1 layer)

FIGURE 1.3  Strengthening identical beams with (a) CFRP tape and (b) NSM bars.
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In other words, cover delamination and FRP debonding are less likely to occur 
with NSM technology. Highly strengthened sections may suffer from splitting of 
concrete cover through NSM bars.

The need to use a high ratio of strengthening reinforcement lends itself 
to combining the two techniques described previously. While no more than 
three to five layers of FRP sheets or one layer of prefabricated FRP plate may 
be used as externally bonded reinforcement, combining these external plates 
or sheets with NSM bars furnishes high strengthening ratios, especially for 
lightly reinforced sections. This combination also helps the unstrengthened 
design capacity, since the loss of external strengthening reinforcement still 
offers higher capacity than the completely unstrengthened section (Rasheed et 
al. 2013; Traplsi et al. 2013).

1.4 � BEHAVIOR OF STRENGTHENED REINFORCED 
CONCRETE BEAMS IN SHEAR

Concrete beams are typically strengthened in shear by external full wrapping, 
U-wrapping, or side bonding FRP sheets or fabrics around or along the sides of 
beams where fibers make 90° or 45° angles with the beam axis along the side profile 
of the beam, as shown in Figure 1.4. Research and practical applications have shown 
that this shear strengthening is a highly effective technique. The design of shear-
strengthened members with FRP is treated the same way as the design of steel stir-
rups used as shear reinforcement in beams. The only different design requirement is 
that the effective FRP strain at failure needs to be identified as opposed to using the 
yielding strength in the case of steel stirrups.

Failure modes range from FRP fracture for fully wrapped beams to shear 
debonding for beams with U-wrapped or side-bonded FRP. The effective FRP 
strain at fracture or debonding is significantly lower than the ultimate tensile strain 
of FRP due to spots of high stress concentrations, which lead to premature frac-
ture of FRP or peeling off through the concrete near the FRP–concrete interface 
(Triantafillou 1998). As a result of analyzing the findings of several investigators 
on this subject, Triantafillou concluded that the effective FRP strain decreases 
with increasing axial stiffness of the FRP (ρfEf). Triantafillou also reported that 
FRP contribution to shear capacity does not increase beyond ρfEf = 0.4 GPa (58 
ksi). ACI 440.2R-08 is used in this text for FRP shear-strengthening design, and 

(a) (b)

FIGURE 1.4  External shear strengthening of concrete beams: (a) 90° U-wrap sheets and 
(b) 45° side sheets.



6 Strengthening Design of Reinforced Concrete with FRP

comparisons with experimental results are made to study the conservatism in the 
code procedure.

1.5 � BEHAVIOR OF REINFORCED CONCRETE 
COLUMNS WRAPPED WITH FRP

Columns in seismic regions must behave in a ductile manner in flexure, shear, and 
axial directions. One very efficient way to increase this ductility is through the 
use of FRP wrapping of sheets or fabric such that the main load-carrying fibers 
are oriented in the hoop direction. This hoop wrapping restricts concrete radial 
expansion under axial load, leading to columns subjected to confining pressure 
or a triaxial state of stress, which is known to increase the strength and improve 
the deformability, as demonstrated in Figure  1.5. Column wrapping with hoop 
FRP jackets enhances axial behavior. Experimental results and analytical find-
ings confirmed the effectiveness of this technique, especially for seismic upgrade 
and structural performance of columns subjected to impact (Lam and Teng 2003). 
Failure modes of wrapped FRP jackets are primarily the FRP fiber rupture at 
premature levels, debonding, or wrap-unwinding at some point during the loading 
(Hart 2008), as shown in Figure 1.6. Accordingly, an effective axial strain needs 
to be established experimentally, at which point circumferential strain is critical 
(ACI 440.2R-08).

Another application similar to column retrofitting but used for new construction 
is the utilization of concrete-filled FRP tubes. In this application, flexural perfor-
mance, shear capacity, compressive strength, and strain performance are enhanced 
due to the significant stiffness of the tube in the longitudinal (axial) direction, con-
tributing to the composite action of the section. Extra stiffness in the hoop direction 
contributes to the confinement and additional shear capacity of the concrete-filled 
FRP tube.

FIGURE 1.5  Confinement in FRP-wrapped columns: (a) unconfined column and (b) con-
crete column confined with wrapped FRP.
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2 Background Knowledge

2.1  OVERVIEW

Before starting the discussion on FRP strengthening, it is important to refresh the 
basics of concrete design of sections and members upon which the FRP strengthen-
ing design equations are built. Consequently, this chapter revisits the following four 
background topics:

	 1.	Flexural design of RC sections
	 2.	Shear design of RC beams
	 3.	 Internal reinforcement to confine RC columns
	 4.	Service load calculations in beams

The inclusion of these four topics was based on the fact that they represent the pri-
mary structural strengthening subjects addressed in this book.

2.2  FLEXURAL DESIGN OF RC SECTIONS

The fundamental principles of flexural design are strain compatibility, force, and 
moment equilibrium, as well as material constitutive (stress–strain) relationships.

2.2.1  Strain Compatibility

Shallow-beam theory accurately assumes that plane sections before bending remain 
plane after bending, directly translating into linear strain distribution across the 
beam section until ultimate failure of that section. Typical reinforced concrete sec-
tions fail in flexure by concrete crushing when concrete compressive strain reaches 
around 0.003 after the yielding of primary tensile reinforcement. The value of 0.003 
is selected by the American Concrete Institute code to mark the attainment of con-
crete crushing (ACI 318-11). This basic failure mode is a ductile one, since the 
member shows high deformability prior to reaching ultimate capacity. Conversely, 
beams may fail in flexure by concrete crushing prior to the yielding of primary 
steel, which is an undesirable brittle failure that is not allowed by ACI 318-11 code 
for beams, while the latter failure mode is allowed for other structural members by 
reducing the ϕ factor significantly (i.e., increasing the margin of strength), as shown 
in Figure 2.1 for sections with grade 60 reinforcement.

ACI 318-11 section 10.3.5 states that for members with factored axial compressive 
load less than 0.1f ′c Ag (beams), the strain at the extreme level of reinforcement (εt) at 
nominal strength shall not be less than 0.004, yielding a ductile failure of the beam, 
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as seen in Figure 2.2b. The strain profile at steel yielding and ultimate capacity are 
illustrated in Figure 2.2. At a level of tensile steel strain (εt = 0.004) when compres-
sive extreme concrete fiber strain reaches concrete crushing (εcu = 0.003), the value 
of c/dt = 0.429 results from similar triangles (Figure 2.2b), which corresponds to a 
factor ϕ = 0.817 for members other than those with spiral steel (Figure 2.1).

2.2.2  Force Equilibrium

To determine the location of the neutral axis in beams, force equilibrium needs to 
be satisfied as follows:
Analysis problem:

	 C = T	 (2.1)

εcf

αf ć b cy αf ć b c

As fy

c

0.003

εs≥0.004

dt
h

cy

φy φn

εy

(a) (b)

dt
h As fy

FIGURE 2.2  Strain and force profile at (a) first steel yielding and (b) ultimate capacity.

φ = 0.75 + (εt – 0.002) (50)

φ = 0.65 + (εt – 0.002) (250/3)

Tension
controlledTransition

Other

Spiral

0.90

0.75

0.65
Compression

controlled

φ

εt = 0.002

Interpolation on c/dt : Spiral φ = 0.75 + 0.15[(1/c/dt) – (5/3)]
Other φ = 0.65 + 0.25[(1/c/dt) – (5/3)]

εt = 0.005

dt

c = 0.600
dt

c = 0.375

FIGURE 2.1  Change of ϕ factor with net tensile strain in extreme steel bars (εt) or neutral-
axis depth ratio (c/dt) for Grade 60 reinforcement. (Courtesy of ACI 318-11.)
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β =f b c A fc s y0.85 1 	 (2.2)

	
=

β
c

A f

f b
s y

c0.85 1
 (See Figure 2.3.)	 (2.3)

If > →c
dt

0.429  This is a Brittle Failure N. G.
Design problem:

	 C = T	 (2.4)

	 f b c A fc s y0.85  1β = 	 (2.5)

	

c
A f

f b
s y

c0.85 1

=
β  (See Figure 2.3.)	 (2.6)

The value c is unknown and is to be substituted into the moment equation to solve 
for the area of steel, As, <c

d(while   0.429)
t

.

2.2.3 M oment Equilibrium

To determine the moment-carrying capacity of the beam section in analysis problems 
or the steel area in design problems, the moment-equilibrium equation is involved:

	

M A f d
a

u s y
2

= φ − 	 (2.7)

where

	

= β

=

= ρ −

φ

a c

M

M bd f

n
M

n y
a
d

u

(1 )

1

2
2 	 (2.8)

0.003

c

dt

As

b

h

εs
dt

h

FIGURE 2.3  Typical rectangular section and strain profile at section failure.



12 Strengthening Design of Reinforced Concrete with FRP

Substituting = βa c1  from the force equilibrium, Equation (2.3),

	

= ρ −

= ρ − ρ

M
bd f

f

f

A f

bdf

M
bd f

f

f

f

f

n

c

y

c

s y

c

n

c

y

c

y

c

1
2* 0.85

1 0.59 (See Figure 2.4)

2

2
	 (2.9)

	 = ω − ωR (1 0.59 ) 	 (2.10)

where

	
ω = ρ =

f

f
R

M
bd f

y

c

n

c

, 2

	

	
= ω − ωR 0.59 (Analysis Equation)2 	 (2.11)

	 ω −ω + =R0.59 02
	

	
ω =

− − R1 1 2.36
1.18

(Design Equation) 	 (2.12)

2.2.4  Constitutive Relationships

Concrete is strong in compression and weak in tension because of structural crack-
ing at a relatively low level of stress. Therefore, concrete needs to be reinforced with 

0.35

0.30 Mn
 = ρ 1–0.59bd2f ć

fy
f ć

ρ
fy

f ć
0.25

0.20

0.15

0.10

0.05

0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Mn

bd2f ć

fy
ρ

f ć

FIGURE 2.4  Tests from 364 beams governed by tension. (Courtesy of Portland Cement 
Association, 2013.)
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steel in tension to bridge cracks and carry tension. Concrete and steel are thermally 
compatible, making them ideal for a composite material. Reinforcing steel has a 
coefficient of thermal expansion of 6.5 × 10-6/°F (11.7 × 10−6/°C), while concrete 
has a coefficient of thermal expansion of 5.5 × 10-6/°F (9.9 × 10-6/°C) (Beer and 
Johnston 1992). The constitutive behavior of reinforced concrete constituent materi-
als is described in the following sections.

2.2.4.1  Behavior of Concrete in Compression
The stress–strain response of concrete in compression is nearly linear at the begin-
ning of loading up to approximately f0.7 c . Beyond that stress, the response becomes 
highly nonlinear up to failure. One of the simplest models to effectively capture the 
stress–strain response of concrete in compression is that of Hognestad’s parabola 
(Hognestad 1951), shown in Figure 2.5.

	

σ =
ε
ε
−

ε
ε

< ε < ε =fc c
c

c

c

c
c cu2 0 0.003

2

	 (2.13)

where εc  is the strain corresponding to fc , typically equal to 0.002 for normal-
strength concrete or, more accurately, ε =c

f
E

c
c

1.71  (MacGregor 1992). The variable 
fc  is the 28-day compressive strength of standard 6 × 12 in. (150 × 300 mm) cylin-
ders, and εcu is the limit of useful compression strain of concrete before crushing, 
identified as 0.003 by ACI 318-11, as demonstrated in Figure 2.6.

The initial tangent modulus from Hognestad’s parabola is

	

d
d

E f f
c

ci c
c

c

c
c

c

2 2
1000

0
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ε

= =
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≅
ε =
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f ć =
 6000 psi

5000

4000

3000

2000

1000

0.001 0.002
Strain, εc (in/in)

0.003 0.004

5

Co
m

pr
es

siv
e S

tr
es

s, 
f c 

(k
si)

4

3

2

1

0

FIGURE 2.5  Typical stress-strain curves for concrete of various strengths. (Courtesy of 
Portland Cement Association [2013].)
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However, Young’s modulus for concrete is taken as the secant value at fc0.4 . This is 
given by the following ACI 318-11 equation:

	 =E fc c57  (US customary units, Ec in ksi, fc  in psi)	 (2.15a)

	 =E fc c4700  (SI units, Ec and fc  in MPa)	 (2.15b)

For concrete between 3000–5000 psi, Eci ≅  3000 – 5000 ksi, Ec = 3122 – 4031 ksi, 
so the two moduli, are comparable in this range of f′ c values. In flexural calculations, 
ACI allows the usage of Whitney’s rectangular stress block to replace Hognestad’s 
parabola. At the concrete crushing failure point, ACI assigns the block a height fac-
tor of γ = 0.85 based on tests of columns (Hognestad 1951) and the effect of sustained 
load on the strength of concrete (Rüsch 1960). Also, the effective depth factor is

	

β = ≤

≤

f

f
c

c

0.85 if 4000 psi

or 30 MPa
1

	 (2.16)

	

β = − < <

β = − < <

f
f

f f

c
c

c c

1.05 0.05
1000

if 4000 psi 8000 psi

1.09 0.008 if 30 MPa 55 MPa

1

1
	 (2.17)

	

β = ≥

≥

f

f
c

c

0.65 if 8000 psi

or 55 MPa
1

	 (2.18)

This was selected by comparison with experimental data points (Kaar, Hanson, and 
Capell 1978), as seen in Figure 2.7.
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FIGURE 2.6  Tests of reinforced concrete members showing selection of the design maxi-
mum compressive strain. (Courtesy of Portland Cement Association [2013].)
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Total compressive force C may be expressed as follows:

	
= αC f bcc 	 (2.19)

To derive the expression of α based on Hognestad’s parabola, the concept of 
replacing the area under the parabola with an equivalent area of a rectangular block 
with a height of α fc  is introduced (Park and Paulay 1975):

	

f d f dc cf c c c
c

c

c

c
c

cfcf

2
2

00
∫∫α ε = σ ε =

ε
ε
−

ε
ε

ε

εε

	
cf

c

c

c

c

cf

c

cf

c

cf

c

cf

c

cf

3 3
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2 3
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2 3

2

2

αε =
ε
ε
−

ε
ε

=
ε
ε

−
ε
ε

α =
ε
ε

−
ε
ε

ε

	 (2.20)

For ε =cf 0.003  and ε = f Ec c c1.71 / , values of the factor (α) are shown in 
Table 2.1. The equivalent rectangular block, according to ACI 318-11, has the fol-
lowing expression, as demonstrated in Figure 2.8 and Table 2.1:

	

C f ba f b cc c 1 1
1

= γ = γ β α = γ β γ =
α
β 	 (2.21)

1.0

0.8

0.6

0.4

0.2

0.0
0 4 8

Concrete Strength (ksi)
12

β 1
γ

β1 = 0.85

β1 = 0.65

Values of β1
for γ = 0.85

FIGURE 2.7  Selection of β1 variation with concrete strength. (Courtesy of ACI SP-55.)
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It is evident from Table 2.1 that values of (γ) noticeably exceed the ACI value 
of 0.85 as the concrete strength increases beyond 4000 psi. This is attributed to 
higher (α) values obtained from Equation (2.20) compared to those selected by Kaar, 
Hanson, and Capell (1978) for higher f′ c values as seen in Table 2.2.

Sources of inconsistency in α and γ results between Tables 2.1 and 2.2 are attrib-
uted to the fact that α and β1 in Table 2.2 are selected by Kaar, Hanson, and Capell 
(1978) to be a lower bound of all the scattered experimental points, whereas it is 
analytically computed in Table 2.1.

TABLE 2.1
Variations of Factors α and γ 
with Concrete Strength

fc  (psi) εεc  
a α γ

3000 0.00164 0.715 0.84

4000 0.0019 0.748 0.88

5000 0.00212 0.748 0.94

6000 0.00232 0.736 0.98

7000 0.00251 0.719 1.03

8000 0.00268 0.701 1.08

a	 Equation from MacGregor (1992).

b 0.85f ć

a/2

a = β1c
c

n.a.

εcu = 0.003

T = As fy

Equivalent rectangular
stress block

C = 0.85 f ćba

Strain
εs > εy

As

d

FIGURE 2.8  ACI equivalent rectangular stress block. (Courtesy of Portland Cement 
Association [2013].)
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2.2.4.2  Behavior of Concrete in Tension
Concrete experiences very little hardening or nonlinear plasticity, if any, prior to crack-
ing or fracture. The ultimate strength of concrete in tension is relatively low, and cracked 
member behavior is significantly different, which is why the prediction of cracking 
strength is critical. Three distinct tests estimate concrete tensile strength: direct tension 
test, split-cylinder test, and flexure test. In direct tension test, stress concentration at the 
grips and load axis misalignment yield lower strength. The split-cylinder test uses a 
6 × 12 in. (150 × 300 mm) standard cylinder on its side subjected to vertical compression 
generating splitting tensile stresses of ≠

P
dL

2 . More reasonable estimates of tensile strength 
are generated by the split-cylinder test. A flexure test is the most widely used test to 
measure the modulus of rupture (fr). This test assumes that concrete is elastic at frac-
ture, and the bending stress is known to be localized at the tension face. Accordingly, 
results are expected to slightly overestimate tensile strength. According to ACI 318-11, 
the modulus of rupture (fr) is

	

f fr c7.5 in psi= λ 	 (2.22)

	
= λf fr c0.62 in MPa 	 (2.23)

For normal weight concrete, λ = 1.0 (Section 8.6.1, ACI 318-11)
For sand-lightweight concrete, λ = 0.85
For all lightweight concrete, λ = 0.75
If fct is given for lightweight concrete, λ = ≤f

f

ct

c
1.0

6.7 '

The value of λ can be determined from ACI 318-11 based on two alternative approaches 
presented in commentary R8.6.1. Typical values for direct tensile strength ft( )  
for normal weight concrete are fc3 5−  in psi and for light weight concrete are 

TABLE 2.2
Selection of Factors α and β1

fc , psi

≤4000 5000 6000 7000 ≥8000

α 0.72 0.68 0.64 0.60 0.56

β 0.425 0.400 0.375 0.350 0.325

β 1 = 2 β 0.85 0.80 0.75 0.70 0.65

γ = α/ β 1 0.85 0.85 0.85 0.86 0.86

Source:	 Kaar, Hanson, and Capell (1978).
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fc2 3−  in psi (Nilson 1997). On the other hand, typical values for split-cylinder 
strength fct( ) for normal weight concrete are fc6 8−  in psi and for light weight 
concrete are fc4 6−  in psi. Furthermore, typical values for modulus of rupture 

fr( ) for normal weight concrete are fc8 12−  in psi and for light weight concrete 
are fc6 8−  in psi. The tensile contribution of uncracked concrete is ignored at the 
level of ultimate capacity because it is negligible at that stage.

2.2.4.3  Behavior of Reinforcing Steel
Steel reinforcement bars behave similarly in tension and compression. Even though 
mild steel has some strain hardening prior to final fracture, the ACI 318 code assumes 
a flat plateau after steel yielding, thus conservatively ignoring this strain hardening 
effect, as shown in Figure 2.9. On the other hand, higher strength steels have non-
linear strain hardening behavior after steel yielding, as demonstrated in Figure 2.10. 
However, typical design computations still model steel as elastic–perfectly plastic to 
conservatively simplify the calculations.

The primary parameters that define the idealized stress–strain model of reinforc-
ing steel are

Es: The Young’s modulus of elasticity for steel is known to be approximately 
equal to 29,000 ksi = 200,000 MPa.

fy: The yield strength of steel, which varies depending on the composition of 
steel alloy, ranges between 40–100 ksi (276–690 MPa).

For high-strength steel, ACI 318-11 code specifies fy as the stress at εs = 0.0035 
( fy > 60 ksi, 414 MPa), as shown in Figure 2.10.

Design stress-strain curve

 Es

1

Neglect in design fy

St
re

ss
, f

s

εy

Strain, εs

FIGURE 2.9  Actual and idealized stress-strain curve of reinforcing steel. (Courtesy of 
Portland Cement Association [2013].)
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Example 2.1: Analysis

For the reinforced concrete beam section shown in Figure 2.11, determine the 
ultimate moment capacity by neglecting the compression reinforcement.

4 ksi

60 ksi

=

=

f

f
c

y

Solution:

First, calculate the effective depth and area of tensile reinforcement using Table A-1 
of Appendix A.
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0.0035 
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FIGURE 2.10  Typical stress–strain response of reinforcing steel. 

dt

c

εcu=0.003

T = As fy

a/2

εs

a
C

0.85 f ć
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FIGURE 2.11  Cross-section details, strain, and force profile for Example 2.1.
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Assume the tensile steel has yielded at ultimate capacity

0.85
1.76 60
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0.85 3.65 in.

3.65
15.625
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Or determine the actual strain in tension steel using strain compatibility:
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Example 2.2: Design

For the reinforced concrete beam section shown in Figure 2.12, design the doubly 
reinforced section to resist a moment capacity of Mu = 220 k‑ft, knowing that the 
primary steel is composed of #7 bars and the compression steel is composed of #4 
bars. Assume the shear stirrup size is #4 bar.

4 ksi

60 ksi
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f

f
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y
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1.5"As

#4

Aś

Stirrups

FIGURE 2.12  Cross-section details for Example 2.2.
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Solution:
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1 1.67

2.67 0.375 (see Figure 2.1)
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Thus, enlarge section or use compression reinforcement.
Another solution approach is possible using Table 2.3 from Portland Cement 

Association (2013). Rnt from Table 2.3 is 911 psi. This Rnt can be simply calculated 
as follows:

165.58 12
0.9 10 15.563

0.9115 ksi 911.5 psi

220 12 1000
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TABLE 2.3
Design Parameters at Steel Strain of 0.005 for Tension-Controlled Sections

==f 3,000c

β1 = 0.85

==f 4,000c

β1 = 0.85

==f 5,000c

β1 = 0.80

==f 6,000c

β1 = 0.75

==f 8,000c

β1 = 0.65

==f 10,000c

β1 = 0.65

Rnt 683 911 1084 1233 1455 1819

ϕRnt 615 820 975 1109 1310 1637

ωt 0.2709 0.2709 0.2550 0.2391 0.2072 0.2072

ρt Grade 40 0.02032 0.02709 0.03187 0.03586 0.04144 0.05180

Grade 60 0.01355 0.01806 0.02125 0.02391 0.02762 0.03453

Grade 75 0.01084 0.01445 0.01700 0.01912 0.02210 0.02762

Source:	 Courtesy of Portland Cement Association (2013).
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Design for doubly reinforced section.

911 10 15.563 2,206,505.5 lb-in. 2206.5 k-in. 183.88 k-ft

220
0.9

183.88 60.56 k-ft

2 2= = × × = = =

= − =
φ

− = − =

M R bd

M M M
M

M

nt nt t

n n nt
u

nt

Strain in compression steel:

0.003 5.84 2.25
5.84

0.003 0.001844
60

29,000
0.00207

ε
−

= ε =
−

× = < =
c d c

s
s

So compression steel does not yield

29,000 0.001844 53.48 ksi

60.56 12 53.48 15.563 2.25 1.021 in.

2.813 1.021
53.48

60
3.723 in.

2

2

( )

( )

= ε = × =

= φ −

× = × × − =

= + = + × =

f E

M A f d d

A A

A A A
f
f

s s s

u s s

s s

s st s
s

y

or use Table 2.3 to determine ρst

ρst = 0.01806

A bd A
f
f

b

b

s st s
s

y
3.721 in.

#7 bars (0.6 in. )
3.721
0.6

6.2 Use seven #7 bars for tension

1.5 2 0.5 2 7 0.875 6 1 16.125" 10" Use two layers (ACI Section 7.6)

1.5 2 0.5 2 4 0.875 3 1 12 10" Use three layers (ACI Section 7.6)

#7 bars (0.6 in. )
1.021
0.6

1.7 Use two #7 bars for compression (better fits the width)

2

2

2

= ρ + =

=

= × + × + × + × = >

= × + × + × + × = >

=

It is evident that the bar arrangement in Figure 2.13 has caused a slightly higher bar area, 
smaller effective steel depth (d), and larger compression steel depth (d′), all of which 
may or may not furnish the moment capacity specified in Example 2.2. Accordingly, 
the reader may check that by solving Problem 2.3 at the end of the chapter.

2#7

7#7

18"
1.0"

1.5"

10"

FIGURE 2.13  Cross-section design for Example 2.2.
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2.3  SHEAR DESIGN OF RC BEAMS

In addition to flexural failure of beams, which is typically ductile in nature and pro-
vides warning signs of large deflections as well as increased and widened flexural 
cracks with continuous yielding of primary steel, beams may fail in shear or diagonal 
tension, which is a sudden brittle failure posing more threat than flexural failure. 
Furthermore, accurate prediction of shear failure is difficult to achieve because the 
mechanisms involved are not all completely understood. Similar to strategies to 
protect against flexural failure, concrete beams are typically reinforced with shear 
reinforcement (stirrups), which are uniformly distributed along the beam profile in 
a vertical or inclined orientation to provide bridging of diagonal tension cracks and 
control or delay shear failure, such that flexural failure takes place first. Accordingly, 
ACI 318-11 specifies a lower strength reduction factor for shear (ϕ = 0.75) compared 
to tension-controlled flexural failure (ϕ = 0.9). Reduced shear resistance must exceed 
factored shear demand:

	 V Vn uφ ≥ 	 (2.24)

but

	 V V Vn c s= + 	 (2.25)

thus

	 V V Vu c s≤ φ + φ 	 (2.26)

where in the case of shear and flexure only
ϕ = 0.75

	 V f b dc c w2= λ  (see Figure 2.14)	 (2.27)

	
= λ + ρ ≤ λ ≤V f

V d

M
b d f

V d

M
c c w

u

u
w c w

u

u

1.9 2500 3.5 b d and 1.0 	 (2.28)

while in the case of shear, flexure, and axial compression.

	 = + λV
N

A
f b dc

u

g
c w2 1

2000
 (see Figure 2.15)	 (2.29)
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Eq. (2-29)

Eqs. (2-30) and (2-31)

Eq. (2-32)

Range of values *
obtained by

1000

1

2

3

4

5

6

750 500 250
Nu
Ag

(psi)

0 –250 –500

fć = 5000, ρw = 0.005,
a/d = 5

fć  = 2500 ρw = 0.03 a/d = 2

* Based on a 6" × 12" beams with d = 10.8"

Eq. (2-33)

Vc

fćbwd√

Compression Tension

FIGURE 2.15  Concrete shear strength for shear, flexure, and axial force. (Courtesy of 
Portland Cement Association [2013].)

Vc

2.50

2.40

2.30

2.20

2.10

2.00

1.90f ć = 3000 psi
f ć = 5000 psi

0 0.25 0.50
Vud/Mu

0.75 1.00

f ćbwd√

Vc (max)
= 3.5

fćbwd√

ρw = 2%

ρw = 1%

ρw = 0.5%

Eq. (2-27)

FIGURE 2.14  Concrete shear strength for shear and flexure only. (Courtesy of Portland 
Cement Association [2013].)
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= λ + ρV f

V d
M

b dc c w
u

m
w1.9 2500 	 (2.30)

	
= −

−
M M N

h d
m u u

4
8

	 (2.31)

	

≤ λ +V f b d
N

A
c c w

u

g

3.5 1
500 	 (2.32)

and in the case of shear, flexure, and axial tension,

	

= + λ ≥V
N

A
f b dc

u

g
c w2 1

500
0 	 (2.33)

where Nu is negative, Nu/Ag is in psi, and ≤fc 100 psi except as in Section 11.1.2.1 
of ACI 318-11.

For shear strength of stirrups perpendicular to the axis of member,

	
V

A f d

S
s

v yt= 	 (2.34)

For shear strength of stirrups inclined with respect to the axis of member,

	
V

A f d

S
s

v yt sin cos( )
=

α + α 	 (2.35)

where S is the stirrup spacing = minimum d( ,24")2

	
V f b d Ss c w

dIf 4 , minimum , 12"4( )> =

	
> φV Au

V
v

cIf , use2 ,min

with exceptions in Section 11.4.6.1 of ACI 318-11

	

=A f
b S
f

b S
f

v c
w

yt

w

yt

max 0.75 ,
50

,min 	 (2.36)
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According to ACI 318-11, Section 11.4.7.9, and to avoid premature crushing of con-
crete struts, V f b ds c w8ʺ . The ACI 318-11 shear design procedure is summarized in 
Table 2.4.

Example 2.3: Design

For the simply supported beam shown in Figure 2.16, you should design for the 
stirrup demand along the beam, considering the ultimate load shown in the figure 
and knowing that 

	 f ksi f ksic yt4 , 50= = 	

Solution:

Assume primary steel is #6
Assume stirrups are #3

= − − − × =d 22" 1.5"
3
8

1
2

6
8

19.75"

28 ft

12 in.

22 in.

Wu = 5.5 k/ft

1.5"

FIGURE 2.16  Beam profile and cross section for Example 2.3.

TABLE 2.4
Layout of Shear Design Provision of ACI 318-11. 

≤≤ φφV V / 2u c φφ << ≤≤ φφV V V/ 2c u c φφ <<V Vc u

Required area of 
stirrups, Av

none
The larger of 

f0.75 and c
b s
f

b s
f

50w
yt

w
yt

The largest of 
−φ
φ f,0.75 andV V s
f c

b s
f

b s
f

( ) 50u c
ytd

w
yt

w
yt

Stirrup 
spacing, s

Required –

The smaller of 

andA f
f b

A f
b0.75 50

v yt

c w

v yt
w

The smallest of 
φ
−φ , andA f

V V
A f

f b
A f
b0.75 50

v ytd
u c

v yt

c w

v yt
w

Maximum –
The smaller of d/2 
and 24 in.

For − φ ≤ φV V f b d( ) 4 ,u c c w , s is the 
smaller of d

2  and 24 in.

For φ < − φ ≤ φf b d V V f b d4 ( ) 8c w u c c w , 
s is the smaller of d

4  and 12 in.

Source:	 Courtesy of Portland Cement Association (2013).
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2
5.5

28
2

77 kips at support

77 5.5
19.75

12
67.95 kips at critical section

2 0.75 2 4,000 12 19.75 22,483.8 lb 22.48 kips

22.48 67.95 kips

= = × =

= − × =

φ = φ × = × × × = =

φ = < =

V w
l

V

V f b d

V kips V

u u
n

ud

c c w

c ud

Therefore, shear reinforcement is required.

V V V f b d

S
A f d

V V

S

S

f b d

S
d

s u c c w

req d
v yt

u c

req d

c w

67.95 22.48 45.47 kips 8 89.94 kips

0.75 0.22 50 19.75
45.47

3.58 in.

Try #4 stirrups

0.75 0.4 50 19.75
45.47

6.52 in. Use 6" spacing

Check :

4
89.94

2
44.97 kips 45.47 kips

4
4.94 in. 12" (the former controls)

Use #4 stirrups at 4.5" o.c.only between support and a distance of 20.8"

'

'

max

max

φ = − φ = − = < φ × =

=
φ

− φ
=

× × ×
=

=
× × ×

=

φ = = <

= = <

Minimum shear reinforcement:

( )

= =
×

×
= ≤ =

×
×

= > =

= φ

φ = − =
− φ

=
−

=

= φ

φ = − =
− φ

=
−

=

S
A f

f b
A f

b

d

x V V

V V w x x
V V

w

x V
V

V
V w x x

V
V

w

v yt

c w

v yt

w

c u c

c u u c c
u c

u

u
c

c
u u m m

u
c

u

0.75
0.4 50,000

0.75 4,000 12
35"

50
0.4 50,000

50 12

33"
2

9.9 in. (controls)

Determine distance from support to

77 22.48
5.5

9.9 ft

Determine distance from support to
2

2
2

77
22.48

2
5.5

11.96 ft

m
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The beam stirrup design is graphically presented in Figure 2.17.
Alternatively, use Table 2.5 to determine the size and spacing of stirrups

45.47 kips, by interpolation

No. 4 stirrups @
3

6.6" provides
36 54

2
45 kips

Use No. 4 stirrups at 6" o.c.

− φ =

=
+

=

V V

d

ud c

Face of support

(Vu–φVc)

φVc

φVc/2 = 11.24 k

Vu

Shear carried
by stirrups φVs

#4 @
4.5"

20.8"
#4 @ 6" #4 @ 9"

Shear reinforcement required
Min. shear

reinforcement
not req’d

Shear
reinforcement

Shear carried
by concrete φVc

d

FIGURE 2.17  Stirrup design profile for Example 2.3. (Courtesy of Portland Cement 
Association [2013].)

TABLE 2.5
Stirrup Shear Strength for Given Bar Size and Spacing

Spacing

Shear Strength ϕ, VS (kips) a

No. 3 U-Stirrups No. 4 U-Stirrups No. 5 U-Stirrups

Grade 40 Grade 60 Grade 40 Grade 60 Grade 40 Grade 60

d/2 13.2 19.8 24.0 36.0 37.2 55.8

d/3 19.8 29.7 36.0 54.0 55.8 83.7

d/4 26.4 39.6 48.0 72.0 74.4 111.6

Source:	 Courtesy of Portland Cement Association (2013).
a	 Stirrups with two legs (double value for four legs, etc.).
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Example 2.4: Analysis

A 9-ft-long column is subjected to the two load cases given here (Cases A and B). 
Check the shear reinforcement under both cases.

	 = =f ksi f ksic yt4 , 50 	

Case A:
Mu = 67.5 k-ft
Vu = 15 kips
Pu = 150 kips

Case B:
Mu = 67.5 k-ft
Vu = 15 kips
Pu = 30 kips

Solution:

Case A: Pu = Nu = 150 kips

( )

= − − − =

φ = φ × + λ = × × +
×

× ×

= =

φ > =

d

V
N

A
f b d

V V

c
u

g
c w

c u

14" 1.5" 0.375
0.875

2
11.69"

2 1
2,000

0.75 2 1
150,000

2,000 14 12
4,000

12 11.69"

19,249.26 lb 19.25 kips

15 kips

V
V

S

A f
f b

A f
b

d

u
c

v yt

c w

v yt

w

But
2

9.625 kips, use minimum reinforcement.

Use #3 stirrups

min

0.75
0.22 50,000

0.75 4,000 12
19.33 in.

50
0.22 50,000

50 12
18.33 in.

2
11.69

2
5.85 in. (controls)

24 in.

> φ =

=

=
×

×
=

=
×
×

=

= =

Using S = 5.5" is adequate.
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Case B: Pu = Nu = 30 kips

( )
φ = φ × + λ = × × +

×

× ×

= =

φ <

V
N

A
f b d

V

c
u

g
c w

c

2 1
2,000

0.75 2 1
30,000

2,000 14 12
4,000

12 11.69"

14,496.36 lb 14.5 kips

15 kips

S
2

5.85 in. (controls)max = =
d

14.5
0.75 0.22 50 11.69

5.5
32.04 kips 15 kipsφ = φ + φ = +

× × ×
= > =V V V Vn c s u

2.4  INTERNAL REINFORCEMENT TO CONFINE RC COLUMNS

ACI 318-11 does not rely on increasing strength by means of core confinement using 
internal reinforcement. However, as the load and deformation increase to an extent 
that spalls off the concrete cover under axial compression, the code tries to com-
pensate for loss of strength from the spalled cover by introducing lateral reinforce-
ment that increases the strength by a comparable amount for concentrically loaded 
columns. Since this confinement effect may only be effectively achieved in circu-
lar cross sections, ACI 318-11 limits that provision to spirally reinforced columns 
(Section 10.9.3).

	

A

A
f
f

s
g

ch

c

yt

0.45 1ρ = −

FIGURE 2.18  Column profile and cross section of Example 2.4.
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Rectangular and square columns are designed for ties using imposed shear 
forces, but no special confinement provision is added in this case. As a min-
imum, ACI 318-11 requires tie spacing to be the minimum of 16 times the 
bar diameter, 48 times the tie diameter, or the least dimension of the column 
(Section 7.10.5.2)

Example 2.5: Design

Design for minimum tie spacing in the following column:

4,000 psi

60,000 psi

50,000 psi

=

=

=

f

f

f

c

y

yt

Solution:

d

d

b

t

4 0.6
15 15

0.0107 0.01 O.K.

Use #3 ties

Spacing min

16 16
7
8

14"

48 48
3
8

18",

15"

controls

ρ =
×
×

= >

=

= × =

= × =

Thus, use #3 ties at 14" c/c.

FIGURE 2.19  Square column cross section of Example 2.5.
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Example 2.6: Design

Design for spiral reinforcement in the following circular column using ACI 318-11:

4,000 psi

60,000 psi

50,000 psi

=

=

=

f

f

f

c

y

yt

Solution:

9 1
π
4

20
0.0286 0.01 O.K.

2
ρ =

×

×
= >

Use #3 spirals

0.45 1 0.45 4
20

4
20 3

1
4

50
0.0138

2

2( )
ρ = − =

π
×

π
× −

− × =
A
A

f
f

s
g

ch

c

yt

4 4 0.11
20 3 0.0138

1.87 in. 1 in.

3 in.

Use #3 spiral @ 1
3
4

in.

( )
ρ = =

×
− ×

= >

<

A
d S

Ss
sp

c

Confinement models for increasing core strength (justifying ACI 318-11 equation):

FIGURE 2.20  Circular column cross section of Example 2.6.
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Circular Columns

1
2

Due to the arch action in between hoops and spirals

1
2

4

1
2

1

2

= ρ

= ρ

ρ =

=
−

− ρ

For circular hoops

f f

f k f

A
d S

k

s
d

l s yt

l e s yt

s
sp

c

e
c

cc

1
2

1
=

−

− ρ

For circular spirals

k

s
d

e
c

cc

where
s′ =	 clear spacing of hoops or clear pitch of spiral
dc =	 diameter of concrete core c/c
ρcc =	ratio of longitudinal reinforcement area to the area of core

f f
f

f
f
f

et alcc c
l

c

l

c
1.254 2.254 1

7.94
2 Mander .(1988)= − + + −

A A
A

f
f

f A f A

f A f A

f f f et al

f
f f

f f A f A

f f A f A

f f A f A

s
g c

c

c

yt

s yt c c

l c c

cc c l

l
cc c

cc c c c

cc c c c

cc c c c

ACI 318-11 equation of Section 10.9.3:

0.45

0.45

2 0.45

4.1 Richart . (1928)

4.1

0.488 0.45

0.57 0.85 0.53 0.85

0.85 0.92 0.85

cover

cover

cover

cover

cover

( )

( )

( )

ρ =
−

ρ =

=

= +

=
−

− =

× − = ×

− = ×

The two terms on both sides of this equation are almost equal.
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2.5  SERVICE LOAD CALCULATIONS IN BEAMS

Even though the working-design method is something of the past, service-load cal-
culations are needed when designing for serviceability conditions like deflections 
and cracking. This serviceability calculation requires checking the cracking moment 
and, in most cases, carrying out computations under actual service loads, assuming 
linear elastic theory and cracked sections. It is worth emphasizing that linear elastic 
computations are valid until the extreme fiber compressive concrete stress exceeds 
0.7f ′c (Park and Paulay 1975; Charkas, Rasheed, and Melhem 2003). Accordingly, 
cracked-section analysis under service loads is primarily performed with linear 
elastic analysis except for very heavily reinforced sections (Charkas, Rasheed, and 
Melhem 2003).

Example 2.7: Calculate

For the beam loaded by four-point bending shown here (Figure 2.21):

	 1.	Calculate the cracking moment (Mcr)
	 2.	Calculate the steel and concrete stresses for P = 30 kN
	 3.	Calculate the steel and concrete stresses for P = 60 kN

Assume f ′c = 25 MPa and fy = 414 MPa

Solution:

Assume ϕ10 stirrups

d = 700 − 38 − 10 − (22/2) = 641 mm

3 m4 m 4 m
700 mm

P/2 P/2

300 mm

38 mm

3 φ 22 mm

FIGURE 2.21  Beam profile and cross section for Example 2.7.
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	 1.	Cracking moment:

n
E
E

A

y
bh

h
n A d

bh n A

I
bh

bh
h

y n A d y

s

c

s

s

s

gt s

200,000
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8.51

4
22.225 3 1164 mm (TableA-1)

2
1

1
300 700 350 7.5 1164 641

300 700 7.5 1164
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12 2
1
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=
+ −
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	 2.	Stresses at P = 30 kN

15 4 60 kN-m 85.2 kN-m uncracked section

60 362 10
0.009285

2339.26 kPa 2.34 MPa 9.4%
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3

	 3.	Stresses at P = 60 kN

M
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A
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30 4 120 kN-m 85.2 kN-m
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1 2
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2 2( )

( )

( )

= × = >

= −

= − = ρ+ ρ − ρ



36 Strengthening Design of Reinforced Concrete with FRP

1164
300 641

0.006053

0.273 1
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0.909

0.273 641 175 mm

1
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7846 kPa 7.85 MPa 31% 70% linear O.K.
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1164 10 0.909 641 10

176,932 kPa 176.93 MPa 43%

2 2 9

c

6 3

ρ =
×

=

= = − =
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Chapter Problems

Problem 2.1
Use the stress–strain curve shown below to determine α and γ for different values of 
f ′c (3–8 ksi). Assume f ″c = f ′c. Determine the results using β1 from ACI 318 equation 
and Park and Paulay’s model. Please realize that the latter is only approximate, since 
it is derived for the entire parabola. Hint: Integrate the area under the curve.

Problem 2.2
Repeat Problem 2.1 using the original Hognestad’s parabola, that was derived in this 
chapter. However, use Park and Paulay’s derivation of the actual β1 instead of the 
ACI 318 equation.

f c̋

εo = 1.8 f c̋/Ec εcu = 0.0038

Linear

0.15 f c̋

Ec

St
re

ss
 f c

Strain εc

2εc 2
εo

εc
εo

fc = f c̋

FIGURE 2.P.1 
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Problem 2.3
For the beam designed in Example 2.2, determine the actual moment capacity of the 
doubly reinforced section (Mu).

Problem 2.4
Design the following rectangular section as a doubly reinforced beam assuming the 
strain limit of 0.005 for tension-controlled sections. Mu = 60 k-ft and clear cover is 
1.0 in. Assume #3 bars for stirrups and compression steel.

Problem 2.5
For the beam section in Problem 2.3, design the beam to resist shear such that it fails 
in flexure and not shear. The beam is under its own weight in addition to a single 
concentrated live load at mid span, as shown.

Problem 2.6
For the beam given in Example 15.3 of the ACI440.2R-08, design the beam in shear 
for the original dead and live loads. Then, check if your design provides adequate 
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stirrup reinforcement under the upgraded loads. Otherwise, indicate the need for 
shear strengthening.

Problem 2.7
For the beam given in Problem 2.6, check extreme fiber stresses and steel stress 
under (a) dead load only and (b) dead load + 20% live load at the time of strengthen-
ing. Determine εbi at mid span in both cases.

Problem 2.8
For the circular column section in Example 2.6, determine the increase in column 
core capacity relative to the loss of concrete cover using the Mander et al. (1988) 
model. Take the #3 spiral transverse reinforcement at

	 (a)	 S = 1.75 in. as obtained based on the ACI 318 equation
	 (b)	 S = 1 in. to invoke higher confinement effect

Problem 2.9
Repeat the third part of Example 2.7 by deriving Icr and determining the stresses 
based upon it. Compare the answers to what you got in Example 2.7. What do 
you conclude?

APPENDIX A

TABLE A-1
Rebar is Sized Nominally by “Eigths of an Inch” of the Bar's Diameter. A #3 
Bar is 3/8" in Diameter. A #6 Bar is 3/4" in Diameter. 3/4 is the Same as 
6/8. Every Bar Can be Measured in Eights of an Inch. A #10 Bar is About 
10/8˝ in Diameter. This is the Same as 1.27"

Diameter Area(in2) Lbs/Inft Diameter (Metric) Metric Bar Size

No. 2 0.250" 0.05 0.167 lbs 6.35 mm No. 6

No. 3 0.375" 0.11 0.376 lbs 9.52 mm No. 10

No. 4 0.500" 0.20 0.668 lbs 12.7 mm No. 13

No. 5 0.625" 0.31 1.043 lbs 15.8 mm No. 16

No. 6 0.750" 0.44 1.502 lbs 19.05 mm No. 19

No. 7 0.875" 0.60 2.044 lbs 22.225 mm No. 22

No. 8 1.000" 0.79 2.670 lbs 25.4 mm No. 25

No. 9 1.128" 1.00 3.400 lbs 28.65 mm No. 29

No. 10 1.270" 1.27 4.303 lbs 32.25 mm No. 32

No. 11 1.410" 1.56 5.313 lbs 35.81 mm No. 36

No. 14 1.693" 2.25 7.650 lbs 43.0 mm No. 43

No. 18 2.257" 4.00 13.60 lbs 57.33 mm No. 57
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TABLE A-2
A Few Years Ago, the Metric Equivalents Were Given Nominal Size Names, 
But They Were Redesignated. It Used to Run 5, 10, 15, 20 on to 55 in 
Increments of 5. But Then Someone Decided Otherwise

Here's what they used to be called:

Imperial Size Former Metric Name Current Metric Name

No. 2 No. 5 No. 6

No. 3 No. 10 No. 10

No. 4 not used No. 13

No. 5 No. 15 No. 16

No. 6 No. 20 No. 19

No. 7 not used No. 22

No. 8 No. 25 No. 25

No. 9 No. 30 No. 29

No. 10 not used No. 32

No. 11 No. 35 No. 36

No. 14 No. 45 No. 43

No. 18 No. 55 No. 57
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3 Constituent Materials 
and Properties

3.1  OVERVIEW

Fiber-reinforced polymer (FRP) is composed of two material phases: fiber and 
polymer matrix. Fibers are impregnated into the polymer matrix to form a macro-
scopically orthotropic layer of material with distinctly higher mechanical properties 
along the fiber direction compared to the transverse directions. The advantages of 
using FRP are the high strength and stiffness-to-weight ratio along the fiber direc-
tion, ease of application in construction due to its light weight, corrosion resistance, 
electromagnetic inertness, and design versatility in which high strength and stiff-
ness (fibers) may be oriented where needed in design. Continuous fibers become 
extremely strong and stiff as fiber diameter becomes smaller due to the reduction and 
sometimes elimination of defects in the microstructure, as illustrated in Figure 3.1. 
On the other hand, small-diameter fibers are not capable of carrying axial compres-
sion or shear stresses due to the lack of shear transfer medium between them. Thus, 
the fibers are embedded into a polymeric matrix that binds them together and allows 
load transfer by shear among the fibers. Additional specifics about fibers and matrix 
are described in the following sections.

3.2  FIBERS

Fibers are typically made of glass, carbon, and aramid. Other synthetic fibers are 
made of polymers which are not used in structural applications due to their low 
mechanical properties. Glass fibers are primarily composed of silicon dioxide with 
some modifying agents (Gibson 1994). E-glass (electrical glass) accounts for the 
largest production of glass fibers in industry due to its low cost despite its mechani-
cal properties that are lower than other grades of glass fibers, as shown in Figure 3.2. 
On the other hand, S-glass (structural glass) is more expensive to produce, but it 
has significantly higher strength and slightly higher modulus, as shown in Table 3.1 
(Gibson 1994) and Table 3.2 (Hyer 1998). C-glass (chemical glass) has an improved 
durability against alkali and acid attacks.

Carbon fibers or graphite fibers are the most widely used fibers in industry due to 
their high stiffness and strength as well as environmental stability. Carbon fibers con-
tain less than 95% carbon, while graphite fibers have at least 99% carbon (Schwartz 
1984). Graphite and carbon fibers are still the most expensive fibers on the market, 



42 Strengthening Design of Reinforced Concrete with FRP

FIGURE 3.2  Unidirectional E-glass fiber sheet used in concrete strengthening.
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[1920] and Gordon [1976].)
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TABLE 3.1
Comparison of Fiber Properties and Selected Metal

Material Tensile Strength, 
103 psi (MPa)

Tensile Modulus, 
106 psi (GPa)

Density, lb/in.3 
(g/cm3)

Bulk 6061T6 Aluminum 45.0 (310) 10.0 (69) 0.098 (2.71)

Bulk SAE 4340 Steel 150.0 (1034) 29.0 (200) 0.283 (7.83)

E-glass fibers 500.0 (3448) 10.5 (72) 0.092 (2.54)

S-glass fibers 650.0 (4482) 12.5 (86) 0.090 (2.49)

Carbon fibers (PAN precursor)

	 AS-4 (Hercules) 580.0 (4000) 33.0 (228) 0.065 (1.80)

	 IM-7 (Hercules) 785.0 (5413) 40.0 (276) 0.064 (1.77)

	 T-300 (Amoco) 530.0 (3654) 33.5 (231) 0.064 (1.77)

	 T-650/42 (Amoco) 730.0 (5033) 42.0 (290) 0.064 (1.77)

Carbon fibers (pitch precursor)

	 P-55 (Amoco) 250.0 (1724) 55.0 (379) 0.072 (1.99)

	 P-75 (Amoco) 300.0 (2068) 75.0 (517) 0.072 (1.99)

	 P-100 (Amoco) 325.0 (2241) 100.0 (690) 0.078 (2.16)

Aramid fibers

	 Kevlar® 29 (Dupont) 550.0 (3792) 9.0 (62) 0.052 (1.44)

	 Kevlar® 49 (Dupont) 550.0 (3792) 19.0 (131) 0.053 (1.47)

Boron fibers

	 0.004" diameter (Textron) 510.0 (3516) 58.0 (400) 0.093 (2.57)

	 0.0056" diameter (Textron) 510.0 (3516) 58.0 (400) 0.090 (2.49)

Silicon carbide fibers

	 0.0056" diameter (Textron) 500.0 (3448) 62.0 (427) 0.110 (3.04)

Source:	 Courtesy of Gibson (1994).

TABLE 3.2
Properties of Common Glass Fibers

Property

Glass Type

E C S

Diameter (μm) 8–14 — 10

Density (kg/m3) 2540 2490 2490

Tensile modulus (GPa) 72.4 68.9 85.5

Tensile strength (MPa) 3450 3160 4590

Elongation (%) 1.8–3.2 4.8 5.7

Coeff. of thermal expansion (×10–6/°C) 5.0 7.2 5.6

Thermal conductivity (W/m/°C) 1.3 — —

Specific heat (J/kg/°K) 840 780 940

Source:	 Courtesy of Hyer (1998).
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despite the considerable drop in their prices, because of the high demand for these 
fibers (Reinhart 1990), as seen in Figure 3.3. Aramid polymeric fibers, which also 
have the trade name of Kevlar®, are used in structural applications as well. Aramid 
has approximately half the density of glass with very high strength, toughness, duc-
tility, and impact resistance (Gibson 1994).

Boron fibers are composites made from coating a substrate of carbon or tungsten with 
boron. They are as heavy as glass, as demonstrated in Table 3.1 (Gibson 1994), and 
expensive to produce.

3.3  MATRIX

The matrix in a composite plays various roles such as holding the fibers into the 
composite part shape, protecting fibers from direct exposure to the environment, 
transferring the stresses through the fiber–matrix interface to the fibers, and resist-
ing some of the applied load, especially transverse normal stresses and interlaminar 
shear stresses (Barbero 2011). The application of a composite is limited by the prop-
erties of its matrix. The thermal stability and useable service temperature as well as 
chemical resistance, moisture resistance, and abrasion resistance are all dependent 
on the matrix and its properties. Certain conditions, such as moisture, act on lower-
ing the glass transition temperature (Tg) of the polymer matrix, thus significantly 
degrading the composite when the operational temperature exceeds Tg.

The matrix transitions from its operational state, where it is stiff and glassy, to 
a soft rubbery state once Tg is exceeded (Hyer 1998). In general, matrix materials 
can be made of polymers or resins, metals, or ceramics. The polymer matrix is the 
most common among matrix materials because of the ease of manufacturing com-
plex components and relatively inexpensive tooling (Barbero 2011). This text focuses 

FIGURE 3.3  Carbon fiber yarn and carbon and glass fiber sheets used in strengthening.
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on polymer matrices, since they are widely used to strengthen concrete structures. 
Resins or polymers are classified into thermosetting and thermoplastic matrices.

3.3.1 T hermosetting Resins

Thermosetting resins are formed into a polymer matrix through an irreversible 
cross-linking chemical process called resin curing. These resins are the most com-
monly used polymer system. This is due to the fact that they have low viscosity, 
allowing thorough fiber immersion, and they require low processing temperatures 
and short processing time. They also cost less than thermoplastic resins (Hyer 1998). 
Resin shelf life refers to the amount of time that a resin system can be stored without 
degradation prior to mixing (Barbero 2011). Resin pot life is the time span during 
which mixed resin is still workable and applicable (Barbero 2011). The properties of 
various widely used thermosetting resins are listed in Table 3.3 (Hyer 1998).

TABLE 3.3
Properties of Thermosetting Polymers at Room Temperature

Property

Thermosetting Polymer

Polyester Vinyl Ester Epoxy Bismaleimide Polyimide

Density (kg/m3) 1100–1500 1150 1100–
1400

1320 1430–1890

Tensile modulus 
(GPa)

1.2–4.5 3–4 2–6 3.6 3.1–4.9

Shear modulus (GPa) 0.7–2 — 1.1–2.2 1.8 __

Tensile strength 
(MPa)

40–90 65–90 35–130 48–78 70–120

Compressive strength 
(MPa)

90–250 127 100–200 200 —

Elongation (%) 2–5 1–5 1–8.5 1–6.6 1.5–3

Coeff. of thermal 
expansion 
(×10–6/°C)

60–200 53 45–70 49 90

Thermal conductivity 
(W/m/°C)

0.2 — 0.1–0.2 — —

Specific heat (J/kg/K) — — 1250–
1800

— —

Glass transition 
temperature (°C)

50–110 100–150 50–250 250–300 280–320

Water absorption (%) 
[24h @ 20°C]

0.1–0.3 — 0.1–0.4 — 0.3

Shrinkage on curing 
(%)

4–12 1–6 1–5 — —

Source:	 Courtesy of Hyer (1998).



46 Strengthening Design of Reinforced Concrete with FRP

3.3.2 T hermoplastic Resins

Thermoplastic resins obtain their mechanical properties through entanglement of the 
polymer chains; thus, they do not produce any cross-linking chemical process. The 
entanglement process is reversible, so upon heating, the chains disentangle, causing 
the polymer to turn to a viscous fluid. Upon cooling, the resin solidifies into a plastic 
shape. Thermoplastic resins are very viscous at processing temperatures, easily causing 
damage to long fibers. It is important to note that thermoplastic resins have no limits on 
shelf and pot life, giving them an advantage in this respect (Barbero 2011). In addition, 
composites made of these resins are easy to repair by heating individual parts to their 
soft state, reshaping them, and then cooling them off (Hyer 1998). However, thermo-
plastic resins are more expensive than thermosetting resins and require higher energy to 
form. Some of the widely used thermoplastic resins are listed in Table 3.4 (Hyer 1998).

3.4  FIBER AND COMPOSITE FORMS

For infrastructure-strengthening applications, fibers or composites are available in 
various forms. The most widely used forms are

	 1.	 Uniaxial fiber sheets: These are sheets of dry continuous fibers in their sim-
plest unprocessed state. These sheets are the most commonly used fiber forms 
with hand lay-up processing, in which the resin is manually added to make the 
composite layers (Arduini, Tommaso, and Nanni 1997; Rasheed et al. 2010), as 
illustrated in Figure 3.4.

	 2.	2-D fabrics: These are 2-D (two-dimensional) textile fabrics of continuous 
uniaxial fibers along with woven fibers in the transverse direction. Because 
of the weaving angle, the mechanical properties are slightly lower than 
those of sheets with higher variability in the properties of the manufac-
tured fabric composites because of the existence of resin-rich regions at the 
weave locations. It is also common to use the hand lay-up process with the 
fabric (Bencardino, Spadea, and Swamy 2002), as seen in Figure 3.5.

	 3.	Prefabricated plates: These are laminated plates manufactured from preim-
pregnated (prepreg) tapes or sheets. The prepreg lay-up process may include 
autoclave oven curing with heat, pressure, and suction to improve the quality of 
the final product (raise the Tg and reduce the voids; Tamimi et al. 2011), as seen 
in Figure 3.6.

	 4.	Pultruded FRP bars and tape: These are pultruded FRP rounded bars or flat FRP 
tape with a typical 60% fiber content by volume. They are used as resin-bonded 
near-surface-mounted (NSM) bars or tape available as a final product (Alkhrdaji, 
Nanni, and Mayo 2000; Rasheed et al. 2010), as seen in Figure 3.6–3.7.

3.5 � ENGINEERING CONSTANTS OF A 
UNIDIRECTIONAL COMPOSITE LAMINA

Unlike isotropic materials that have similar properties in all directions, a uniax-
ial lamina is orthotropic, with distinct properties along the fiber, transverse, and 
through-the-thickness directions, as seen in Figure  3.8. Isotropic materials have 
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Warp yarn
Fill yarn

(a) (b) (c)

FIGURE 3.5  Examples of biaxial woven fabrics. (Courtesy of Barbero [2011].)

FIGURE 3.6  Carbon and glass prefabricated tape and plate used in strengthening.

FIGURE 3.4  Carbon fiber dry sheets and composite laminas used in strengthening.
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X1

X2
X3

FIGURE 3.8  FRP lamina with the principal material directions.

FIGURE 3.7  Carbon and glass FRP bars used in NSM strengthening technology.
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only two independent engineering constants, which are Young’s modulus of elastic-
ity (E) and Poisson’s ratio (ν). Conversely, orthotropic laminas have nine distinct 
engineering parameters, including three Young’s moduli along the three principal 
materials directions (E1, E2, E3), three independent Poisson’s ratios (ν12, ν13, ν23), and 
three shear moduli (G12, G13, G23). The generalized 3-D compliance relationship of 
an orthotropic sheet is

ε
ε
ε
γ

γ

γ

=

−
ν

−
ν

−
ν

−
ν

−
ν

−
ν

σ
σ
σ
τ
τ
τ

E E E

E E E

E E E

G

G

G

1
0 0 0

1
0 0 0

1
0 0 0

0 0 0
1

0 0

0 0 0 0
1

0

0 0 0 0 0
1

11

22

33

12

13

23

1

21

2

31

3

12

1 2

32

3

13

1

23

2 3

12

13

23

11

22

33

12

13

23

	 (3.1)

where =ν ν
E

ij

i

ji

jE
. The stiffness matrix is obtained by inverting the compliance 

matrix in Equation (3.1) (Rasheed 1996),
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where 1 2 .12 21 23 32 13 31 21 32 13= − ν ν − ν ν − ν ν − ν ν ν
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If the compliance matrix in Equation (3.1) is reduced to 2-D behavior (sheet anal-
ysis), the stress components σ33 = τ13 = τ23 = 0. The third, fifth, and sixth rows and 
columns are removed, yielding
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The 2-D compliance matrix in Equation (3.3) may be inverted to yield the 2-D 
stiffness matrix (Jones 1975),
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3.6 � FRP SHEET ENGINEERING CONSTANTS 
FROM CONSTITUENT PROPERTIES

Using the mechanics-of-materials approach requires certain simplifying assumptions 
in order to derive the mechanical properties of a unidirectional composite sheet. The 
accuracy of the estimated property depends on the accuracy of the assumption made.

3.6.1  Determination of E1

The first modulus along the fiber direction may be determined by the rule of mix-
tures that results from the assumption of having the fiber and the matrix deform in 
equal amounts along the fiber direction (Jones 1975). This assumption is known to be 
very accurate, leading to an accurate estimation of the apparent Young’s modulus E1,

	 E1 = Ef Vf + Em Vm	 (3.5)

where Ef is the fiber modulus, Vf is the fiber volume fraction, Em is the matrix modu-
lus, and Vm = 1 − Vf.

3.6.2  Determination of E2

The second modulus along the transverse direction is not as straightforward to 
derive. One simplifying assumption can be made considering the same transverse 
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stress σ2 in the fiber and the matrix, leading to the following mechanics-of-materials 
expression, which is known to yield a lower bound value of the apparent Young’s 
modulus E2:

	

E
E E

V E V E E

V

E
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E
f m

m f f m

m
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f
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1

2
2

=
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More accurate determination of E2 could be obtained using the Halpin-Tsai equa-
tions (Jones 1975),

	

E

E

V

Vm

f

f

1
1

2 =
+ ξη
− η 	 (3.7)

where

	

E E

E E
f m

f m

1
η =

−

+ ξ 	 (3.8)

The value of ξ could be difficult to obtain, since it is a function of the fiber geom-
etry, packing geometry, and loading conditions. However, studies have shown that a 
value of ξ = 2 can be approximated for calculating E2 with a fiber volume fraction of 
0.55 (Jones 1975). However, ξ = 1 has been observed to yield more accurate results 
when computing typical properties.

3.6.3  Determination of ν12

The major Poisson’s ratio ν12 may be determined by the rule of mixtures resulting 
from the previous two assumptions of having the fiber and the matrix deform in 
equal amounts along the fiber direction and having the transverse stress σ2 = 0 (Jones 
1975). These assumptions are known to be accurate, leading to an accurate estima-
tion of the major Poisson’s ratio ν12:

	 V Vf f m m12ν = ν + ν 	 (3.9)

3.6.4  Determination of G12

The sheet in-plane shear modulus G12 is determined in the mechanics-of-materials 
approach using the assumption that the shearing stress of the fiber and the matrix 
are identical. The well-known nonlinear shear stress–strain is linearized using this 
assumption. Accordingly, the resulting equation yields a lower bound solution to the 
in-plane shear modulus G12:

	
G

G G

V G V G G
V
G

V

G
f m

m f f m

m

m
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or
1

12
12

=
+

= + 	 (3.10)
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( )=
+ ν

G
E

f
f

f2 1 	 (3.11)

	
G

E
m

m

m2 1( )
=

+ ν
	 (3.12)

More-accurate determination of G12 could be obtained using the Halpin-Tsai 
equations (Jones 1975),

	

G

G

V

Vm

f

f

1
1

12 =
+ ξη
− η

	 (3.13)

where

	

G G

G G
f m

f m

1
η =

−

+ ξ
	 (3.14)

The value of ξ could be difficult to obtain, since it is a function of the fiber geom-
etry, packing geometry, and loading conditions. However, studies have shown that a 
value of ξ = 1 for calculating G12 can be approximated for a fiber volume fraction of 
0.55 (Jones 1975).

3.6.5  Determination of ν21:

Once the first three parameters are estimated, the minor Poisson’s ratio ν21 is directly 
calculated, as discussed in Section 3.5:

	

ν
=
ν

ν =
ν

E E E
E12

1

21

2
21

12

1
2 	 (3.15)

Since the ratio of E
12
1

ν  is accurately estimated, the minor Poisson’s ratio ν21 will yield 
a lower bound solution if the mechanics-of-materials approach is followed.

Example 3.1

E-Glass FRP composite is made of 60% fiber and 40% epoxy matrix by volume. 
Determine the in-plane orthotropic properties of the composite sheet from the 
constituent properties.

0.22

0.37

ν =

ν =

f

m
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Solution:

Using Tables 3.2 and 3.3,

	 72.4 0.6 4 0.4 45.04 GPa1 = × + × =E

E

E

G

G

G

G

E

E

G

f

m

72.4 4
0.4 72.4 0.6 4

9.235 GPa (mechanics of materials)

72.4 4 1
72.4 / 4 1

0.895

1 1 0.895 0.6
1 0.895 0.6

4 13.28 GPa (Halpin-Tsai)

0.22 0.6 0.37 0.4 0.28

0.057 (mechanics of materials)

0.0826 (Halpin-Tsai)

72.4
2 1.22

29.67 GPa

4
2 1.37

1.46 GPa

29.67 1.46
0.4 29.67 0.6 1.46

3.4 GPa (mechanics of materials)

29.67 1.46 1
29.67 / 1.46 1

0.906

1 1 0.906 0.6
1 0.906 0.6

1.46 4.94 GPa (Halpin-Tsai)

Compare to typical numbers of E-GFRP epoxy with 60% fiber (Table3.7)

45 GPa

12 GPa

0.28

0.075

5.5 GPa
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=
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+

=
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= =

= =

=
×

× + ×
=

η =
−
+

=

=
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− ×

× =

=

=
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=

3.7  PROPERTIES OF FRP COMPOSITES (TENSION)

FRP composites provide stiffness and strength along the fiber direction in tension, 
and they behave linearly elastic along that direction up to brittle material failure or 
rupture, as shown in Figure 3.9. On the other hand, the behavior along the matrix 
or transverse direction and in-plane shear is generally nonlinear. The behavior 
along the transverse direction could be approximated as linear elastic up to matrix 
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cracking, while in-plane shear behavior is always nonlinear. Nevertheless, this text 
focuses on the behavior along the fiber direction, since FRP fibers are aligned with 
the structural axis of loading in the strengthening application.

According to ACI 440.2R-08,

	 ≡f fu mean ultimate tensile strength of 20 coupon specimens

	 ε ≡fufu mean ultimate tensile strength of 20 coupon specimens

based on ASTM D3039 and D7205.

	 f ffu fu f3 ultimate tensile strength* = − σ = 	 (3.16)

	 fu fu 3 ultimate tensile strain*ε = ε − σ =ε 	 (3.17)

where σf and σε are the standard deviations for the ultimate strength and strain 
according to ACI 440.2R-08.

Equations (3.16) and (3.17) yield 99.87% probability of exceedance

	 f C ffu E fu design ultimate tensile strength*= = 	 (3.18)

	 Cfu E fu design ultimate tensile strain*ε = ε = 	 (3.19)

	
E

f f
f

fu

fu

fu

fu

design modulus of elasticity of FRP
*

*=
ε

=
ε

= 	 (3.20)

where CE is the environmental reduction coefficient (ACI 440.2R-08), as seen in 
Table 3.5.

For FRP plates or precured laminates, properties that are reported are those of 
the composite, since fiber and resin volume fractions are well controlled. Conversely, 
FRP sheets manufactured by hand wet lay-up have their properties primarily 
reported based on the net fiber area, since it is more controlled than the fixed width 

εfu

ffu

Ef

1
ε

σ

FIGURE 3.9  FRP design stress–strain curve along the fiber direction.
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and thickness of the cured composite system. This is due to the fact that the wet lay-
up process has controlled fiber content and variable resin content that depends on the 
installer (ACI 440.2R-08). It is very important to note that net fiber area properties 
are not the same as dry fiber properties, but rather the same as the laminate or com-
posite properties with known fiber content. Since the thickness of the FRP sheet is 
very small, the corresponding strength and modulus values are high because ( ffuAf) 
or (Ef  Af) are constant for a composite.

For practical and design purposes, FRP mechanical properties are needed. 
ACI 440R-07 reports typical values for sheets and plates from various manufacturers for 
materials used in civil infrastructure-strengthening applications, as shown in Table 3.6. 
It can be seen from the values in Table 3.6 that CFRP typically has higher modulus and 
tensile strength and lower ultimate strain than GFRP, as shown in Figure 3.10.

On the other hand, the Delaware Encyclopedia of Composites (Zweben 1989) 
reports typical composite mechanical properties used in aerospace applications. 
These values are listed here for comparison purposes. It is evident that the lami-
nate properties of the materials used for aerospace applications clearly exceed those 
of plates used for civil engineering applications due to the higher control over the 
manufacturing process involved (heating, pressure, and vacuum). On the other hand, 
the FRP sheet properties (Table 3.6) may be seen to exceed those of aerospace com-
posites (Tables 3.7–3.12), which is due to the fact that sheet properties are based on 
net fiber area and not on composite laminate area. For example, MBrace EG 900 
glass sheet has a net fiber modulus of 72.4 GPa, and multiplying this by the fiber vol-
ume fraction of 0.6 yields 43.44 GPa for the composite, which is close to the 45 GPa 
reported in Table 3.7 for E-glass. Similarly, the tensile strength has a net fiber value 
of 1517 MPa, and multiplying this by 0.6 yields 910 MPa for the composite, which is 
slightly less than the 1020 MPa reported in Table 3.7. Further properties of unidirec-
tional, cross-ply and angle-ply laminates are given in Table 3.13 (ACI 440.2R-08).

TABLE 3.5
Environmental Reduction Factors for Different Exposure Cases and FRP 
Systems

Exposure Conditions Fiber Type
Environmental 

Reduction Factor, CE

Interior exposure Carbon 0.95

Glass 0.75

Aramid 0.85

Exterior exposure (bridges, piers, and unenclosed 
parking garages)

Carbon 0.85

Glass 0.65

Aramid 0.75

Aggressive environment (chemical plants and 
wastewater treatment plants)

Carbon 0.85

Glass 0.50

Aramid 0.70

Source: Courtesy of ACI 440.2R-08.
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TABLE 3.6
Manufacturer Mechanical Properties of Some Commercially Available 
Systems

FRP System
Fiber 
Type

Weight, g/
m2 (lb/ft2)

Design 
Thickness, 
mm (in.)

Tensile 
Strength, 
MPa (ksi)

Tensile 
Elastic 

Modulus, 
GPa (ksi)

AGI 440.3R 
Test 

Reporting 
Method

Fyfe Co. LLC (2005)
Tyfo SEH51 
sheet

Glass 915 (0.19) 1.3 (0.052) 575 (83.4) 26.1 (3,785) Method 1

Tyfo SCH41 
sheet

Carbon 644 (0.14) 1.0 (0.040) 985 (143) 95.8 (13,900) Method 1

Sika Corp. (2007)
SikaWrap 
Hex 100G 
sheet

Glass 913 (0.19) 1.0 (0.040) 531 (77) 23.6 (3,430) Method 1

SikaWrap 
Hex 103C 
sheet

Carbon 618 (0.13) 1.0 (0.040) 717 (104) 65.1 (9,450) Method 1

CarboDur S 
plate

Carbon 1800 (0.37) 1.2–1.4 
(0.048–0.055)

2800 (406) 165 (23,900) Method 1

CarboDur M 
plate

Carbon 1900 (0.39) 1.2 (0.048) 2400 (348) 210 (30,500) Method 1

CarboDur H 
plate

Carbon 1900 (0.39) 1.2 (0.048) 1300 (189) 300 (43,500) Method 1

BASF (2006)
MBrace EG 
900 sheet

Glass 900 (0.19) 0.37 (0.015) 1517 (220) 72.4 (10,500) Method 2

MBrace AK 
60 sheet

Aramid 600 (0.12) 0.28 (0.011) 2000 (290) 120 (17,400) Method 2

MBrace CF 
130

Carbon 300 (0.062) 0.17 (0.007) 3800 (550) 227 (33,000) Method 2

MBrace CF 
160

Carbon 600 (0.124) 0.33 (0.013) 3800 (550) 227 (33,000) Method 2

S&P 100/1.4 Carbon — 1.4 (0.055) 2700 (390) 159 (23,000) Method 1

Hughes Brothers (2005)
Aslan 400 
plate

Carbon — 1.4 (0.055) 2400 (350) 131 (19,000) Method 1

Aslan 500 
tape

Carbon — 2.0 (0.079) 2068 (300) 124 (18,000) Method 1

Aslan 500 
tape

Carbon — 4.5 (0.177) 1965 (285) 124 (18,000) Method 1

Source: Courtesy of ACI 440R-07.
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FIGURE 3.10  Typical stress–strain curves for FRP systems. (Courtesy of ACI 440R-07.)

TABLE 3.7
Typical Mechanical Properties for E-Glass/Epoxy Unidirectional 
Composites with Vf = 0.6

Elastic Constants GPa 106 psi

Longitudinal modulus, EL 45 6.5

Transverse modulus, ET 12 1.8

Axial shear modulus, GLT 5.5 0.8

Poisson’s ratio, vLT (dimensionless) 0.28

Strength Properties MPa 103 psi

Longitudinal tension, FL
tu 1020 150

Longitudinal compression, FL
cu 620 90

Transverse tension, FT
tu 40 7

Transverse compression, FT
cu 140 20

In-plane shear, FLT
su 70 10

Interlaminar shear, Fisu 70 10

Ultimate Strains %

Longitudinal tension, ∈L
tu 2.3

Longitudinal compression, ∈L
cu 1.4

Transverse tension, ∈T
tu 0.4

Transverse compression, ∈T
cu 1.1

In-plane shear, γ LT
u 1–6

Density, kg/m3 (lb/in.3) 2.1 × 103 (0.075)

Source:	 Courtesy of Zweben (1989).
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Example 3.2

Two test panels were fabricated, one using one ply only and the other one using 
two plies of an E-glass fiber/epoxy unidirectional FRP system with the wet lay-up 
technique (Wuertz 2013). Based on the manufacturer’s data sheet of this FRP sys-
tem, the net fiber area is 0.043 in.2/in. (1.092 mm2/mm) width per ply. After the 
system has cured, three 1-in. (25.4 mm)-wide test coupons are cut from the single-
ply panel (GFRP-1, GFRP-2, GFRP-3), and three 1-in. (25.4 mm)-wide test coupons 
are cut from the two-ply panel (GFRP-4, GFRP-5, GFRP-6). The test coupons are 
tested in tension to failure according to ASTM D3039. Table  3.14 presents the 
results of the tension tests. Determine the average tensile properties based on the 
composite laminate and the net fiber area.

Solution:

Properties for the composite laminate:

TABLE 3.8
Typical Mechanical Properties for S-Glass/Epoxy 
Unidirectional Composites with Vf = 0.6

Elastic Constants GPa 106 psi

Longitudinal modulus, EL 55 8.0

Transverse modulus, ET 16 2.3

Axial shear modulus, GLT 7.6 1.1

Poisson’s ratio, vLT (dimensionless) 0.28

Strength Properties MPa 103 psi
Longitudinal tension, FL

tu 1620 230

Longitudinal compression, FL
cu 690 100

Transverse tension, FT
tu 40 7

Transverse compression, FT
cu 140 20

In-plane shear, LT
suF 80 12

Interlaminar shear, Fisu 80 12

Ultimate Strains %

Longitudinal tension, ∈L
tu 2.9

Longitudinal compression, ∈L
cu 1.3

Transverse tension, ∈T
tu 0.4

Transverse compression, ∈T
cu 1.1

In-plane shear, γ LT
u 1–6

Density, kg/m3 (lb/in.3) 2.0 × 103 (0.073)

Source:	 Courtesy of Zweben (1989).
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For the first three coupons,

0.104 1 0.104 (67.1 )

32.52 (224.3 )

2007.4 (13.85 )

2 2

3.382
0.104

32.52
0.0162

= × =

= =

= = =ε

A in mm

f ksi MPa

E ksi GPa

f

fu

f
ffu
fu

Compared to 2010 ksi (13.867 GPa) measured at 60% of the rupture load.
For the other three coupons,

0.153 1 0.153 (98.71 )

44.63 (307.9 )

2324.4 (16.04 )

2 2

6.828
0.153

44.63
0.0192

= × =

= =

= = =ε

A in mm

f ksi MPa

E ksi GPa

f

fu

f
ffu
fu

Compared to 2326.3 ksi (16.05 GPa) measured at 60% of the rupture load.

TABLE 3.9
Typical Mechanical Properties for High-Strength 
Graphite/Epoxy Unidirectional Composites with Vf = 0.6

Elastic Constants GPa 106 psi

Longitudinal modulus, EL 145 21

Transverse modulus, ET 10 1.5

Axial shear modulus, GLT 4.8 0.7

Poisson’s ratio, vLT (dimensionless) 0.25

Strength Properties MPa 103 psi
Longitudinal tension, FL

tu 1240 180

Longitudinal compression, FL
cu 1240 180

Transverse tension, FT
tu 41 6

Transverse compression, FT
cu 170 25

In-plane shear, FLT
su 80 12

Interlaminar shear, Fisu 80 12

Ultimate Strains %

Longitudinal tension, ∈L
tu 0.9

Longitudinal compression, ∈L
cu 0.9

Transverse tension, ∈T
tu 0.4

Transverse compression, ∈T
cu 1.6

In-plane shear, LT
uγ 1–6

Density, kg/m3 (lb/in.3) 1.58 × 103 (0.057)

Source: Courtesy of Zweben (1989).
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	 It is evident that the two sets of coupons have drastically different strengths, 
even though they are made of the same materials. This is due to the fact 
that the second set (with two plies) has a higher fiber volume fraction. To 
overcome this difficulty, the net fiber area is used.

Properties for the net fiber area:

For the first three coupons,

0.043in / 1 0.043in (27.74 )2 2 2= × =A in in mmf

3.382
0.043

78.65k (542.6 )= =f si MPafu

78.65
0.022

3575k (24.66 )=
ε

= =E
f

si GPaf
fu

fu .

TABLE 3.10
Typical Mechanical Properties for High-Modulus Graphite/
Epoxy Unidirectional Composites with Vf = 0.6

Elastic Constants GPa 106 psi

Longitudinal modulus, EL 220 32

Transverse modulus, ET 6.9 1.0

Axial shear modulus, GLT 4.8 0.7

Poisson’s ratio, vLT (dimensionless) 0.25

Strength Properties MPa 103 psi
Longitudinal tension, FL

tu 760 110

Longitudinal compression, FL
cu 690 100

Transverse tension, FT
tu 28 4

Transverse compression, FT
cu 170 25

In-plane shear, FLT
su 70 10

Interlaminar shear, Fisu 70 10

Ultimate Strains %
Longitudinal tension, ∈L

tu 0.3

Longitudinal compression, ∈L
cu 0.3

Transverse tension, ∈T
tu 0.4

Transverse compression, ∈T
cu 2.8

In-plane shear, u
LTγ 1–6

Density, kg/m3 (lb/in.3) 1.64 × 103 (0.059)

Source: Courtesy of Zweben (1989).
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The ultimate strain here is reported by the manufacturer.
For the other three coupons,

2 0.043 1 0.086in (55.48 )2 2= × × =A mmf

6.828
0.086

79.4k (547.75 )= =f si MPafu

79.4
0.022

3609k (24.9 )=
ε

= =E
f

si GPaf
fu

fu .

The ultimate strain here is reported by the manufacturer.

	 It is evident that the two sets of coupons have almost the same net fiber 
strength and modulus. This is why net fiber properties are more con-
sistent to use in strengthening than laminate properties for wet lay-up 
applications. Another way to obtain consistent results between the two 
sets of coupons is to compute the average FRP strength per unit width 
of the laminate:

TABLE 3.11
Typical Mechanical Properties for Ultrahigh-Modulus 
Graphite/Epoxy Unidirectional Composites with Vf = 0.6

Elastic Constants GPa 106 psi

Longitudinal modulus, EL 290 42

Transverse modulus, ET 6.2 0.9

Axial shear modulus, GLT 4.8 0.7

Poisson’s ratio, vLT (dimensionless) 0.25

Strength Properties MPa 103 psi

Longitudinal tension, FL
tu 620 90

Longitudinal compression, FL
cu 620 90

Transverse tension, FT
tu 21 3

Transverse compression, FT
cu 170 25

In-plane shear, FLT
su 60 9

Interlaminar shear, Fisu 60 9

Ultimate Strains  (%)

Longitudinal tension, ∈L
tu 0.2

Longitudinal compression, ∈L
cu 0.2

Transverse tension, ∈T
tu 0.3

Transverse compression, ∈T
cu 2.8

In-plane shear, γ LT
u 0.6–4

Density, kg/m3 (lb/in.3) 1.70 × 103 (0.061)

Source:	 Courtesy of Zweben (1989).
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For the first three coupons:

0.104 1 0.104in (67.1 )2 2= × =A mmf

32.52 0.104
1 1

3.382k / / (0.593 / / )= =
×
×

=p
f A
nw

in ply kN mm plyfu
fu f

f

For the other three coupons:

0.153 1 0.153in (98.71 )2 2= × =A mmf

44.63 0.153
2 1

3.414k / / (0.598 / / )= =
×
×

=p
f A
nw

in ply kN mm plyfu
fu f

f

TABLE 3.12
Typical Mechanical Properties for Kevlar 49 Aramid/Epoxy 
Unidirectional Composites with Vf = 0.6

Elastic Constants GPa 106 psi

Longitudinal modulus, EL 76 11

Transverse modulus, ET 5.5 0.8

Axial shear modulus, GLT 2.1 0.3

Poisson’s ratio, vLT (dimensionless) 0.34

Strength Properties MPa 103 psi

Longitudinal tension, FL
tu 1240 180

Longitudinal compression, “yield,” FL
cy 230 33

Longitudinal compression, ultimate, FL
cu 280 40

Transverse tension, FT
tu 30 4.3

Transverse compression, FT
cu

140 20

In-plane shear, FLT
su 60 9

Interlaminar shear, Fisu 60 9

Ultimate Strains %

Longitudinal tension, ∈L
tu 1.6

Longitudinal compression, “yield,” ∈L
cy 0.3

Longitudinal compression, ultimate, ∈L
cu >2.0

Transverse tension, ∈T
tu 0.5

Transverse compression, ∈T
cu 2.5

In-plane shear, γ LT
u 1–6

Density, kg/m3 (lb/in.3) 1.38 × 103 (0.050)

Source: Courtesy of Zweben (1989).
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3.8  PROPERTIES OF FRP COMPOSITES (COMPRESSION)

ACI 440.2R-08 does not allow externally bonded FRP sheets or plates to carry 
compression due to the lack of testing or experimental validation. Nevertheless, 
Wu (1990) reported that the compressive strength of coupons is 55% of the tensile 
strength for GFRP, 78% for CFRP, and 20% for AFRP, depending on the fiber vol-
ume fraction and the resin used. Composites with fiber volume fraction of 55%–60% 
are reported to have a compressive modulus equal to 80% of the tensile modulus 
for GFRP, 85% for CFRP, and 100% for AFRP (Ehsani 1993). These results are 
reported primarily for FRP bars, but not for sheets or plates externally bonded to 
concrete using resin adhesives.

3.9  PROPERTIES OF FRP COMPOSITES (DENSITY)

Composites are known to be very lightweight materials, ranging in weight between 
15%–27% of the weight of steel, as seen in Table 3.15. Accordingly, significant sav-
ings in transportation costs, dead-load reduction, and on-site ease of installation are 
anticipated (ACI 440.2R-08).

3.10  PROPERTIES OF FRP COMPOSITES (THERMAL EXPANSION)

The coefficient of thermal expansion for unidirectional FRP systems varies signifi-
cantly between the fiber and the transverse directions, based on the fiber and resin 
type as well as the fiber volume fraction. Typical values are listed in Table  3.16, 
where concrete and steel values are also listed for reference purposes.

To determine the values of the coefficients of thermal expansion (CTE) along the 
structural principal directions when the material principal directions are different 
(i.e., in the case of angle plies of ±θ° between the fiber and the main structural load-
ing axis), the generalized strain–stress relationship, in the presence of temperature 
changes, is invoked:

TABLE 3.14
GFRP Coupon Testing To Determine Laminate and Net-Fiber Properties

Specimen
Width 
(in.)

Width 
(mm)

Average 
Thickness 

(in.)

Average 
Thickness 

(mm)

Rupture 
Load 
(kips)

Rupture 
Load 
(kN)

Ultimate 
Strain

GFRP-1 1.00 25.4 0.099 2.51 3.237 14.405 0.01507

GFRP-2 1.00 25.4 0.103 2.62 3.368 14.988 0.0166

GFRP-3 1.00 25.4 0.111 2.82 3.541 15.757 0.01694

Average 1.00 25.4 0.104 2.65 3.382 15.05 0.0162
GFRP-4 1.00 25.4 0.166 4.22 7.387 32.872 0.02195

GFRP-5 1.00 25.4 0.142 3.61 5.467 24.328 0.01699

GFRP-6 1.00 25.4 0.152 3.86 7.630 33.955 0.01868

Average 1.00 25.4 0.153 3.89 6.828 30.385 0.0192
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Along the material principal axes:
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Along the structure principal axes:
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where the CTEs transform like tensor strains (see Figure 3.11),
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TABLE 3.15
Typical Densities of FRP 
Materials Compared to Steel

Material Density lb/ft3 (g/cm3)

Steel 490 (7.9)

GFRP 75–130 (1.2–2.1)

CFRP 90–100 (1.5–1.6)

AFRP 75–90 (1.2–1.5)

TABLE 3.16
FRP Coefficients of Thermal Expansion vs. Steel and Concrete, 
× 10−6/°F (× 10−6/°C)

Direction GFRP CFRP AFRP Concrete Steel

Longitudinal αL 3.3 to 5.6 
(6 to 10)

−0.6 to 0 
(−1 to 0)

−3.3 to −1.1 
(−6 to −2)

5.5 (9.9) a 6.5 (11.7) a

Transverse αT 10.4 to 12.6 
(19 to 23)

12 to 27 
(22 to 50)

33 to 44 (60 
to 80)

5.5 (9.9) 6.5 (11.7)

a	 From Beer and Johnston (1992).
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Along the angle-ply laminate:
Combining the CTEs of the two identical plies together,
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3.11  PROPERTIES OF FRP COMPOSITES (HIGH TEMPERATURE)

The glass transition temperature, Tg, is the threshold beyond which the polymer soft-
ens and loses its ability to transfer stress from concrete to fiber. Typical Tg values 
for resins cured at room temperature range between 140°F–180°F (60°C–82°C). In 
bond-critical applications, reaching Tg would be the cutoff point for the FRP stress-
carrying capacity. In contact-critical applications, reduced stress along the fiber may 
be carried up to 1800°F (1000°C) for CFRP, 350°F (175°C) for AFRP, and 530°F 
(275°C) for GFRP (ACI 440.2R-08). Reduction in the tensile strength of CFRP 
exceeds 20% at 500°F (260°C), according to Hawileh et al. (2009).

3.12  PROPERTIES OF FRP COMPOSITES (LONG-TERM EFFECTS)

With FRP composites, long-term effects primarily include creep rupture and fatigue. 
Creep rupture is a sudden failure at a sustained tensile loading for an extended period 
of time. The time-to-failure period is reduced when the sustained tensile stress to 
short-term ultimate strength ratio is increased and when the environmental exposure 
is increased (ACI 440.2R-08).

Two studies on FRP bars concluded that maintaining the sustained stress ratio 
below 0.3 for GFRP, 0.5 for AFRP, and 0.9 for CFRP results in time-to-failure 

x

y

+θ –θ

FIGURE 3.11  Typical angle ply laminate with fiber orientations with respect to the loading 
axes.
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periods exceeding 500,000 hours (about 57 years). These studies were conducted by 
Yamaguchi et al. (1997) and Malvar (1998).

Fatigue is also a sudden failure at a cyclic relatively low stress range for an 
extended period of time. For a stress ratio (minimum to maximum applied stress) of 
0.1 using tension-tension sinusoidal low-cycle loading, the fatigue strength of CFRP 
is 60%–70% of the static ultimate strength after 1 million cycles (ACI 440.2R-08). 
Larson, Peterman, and Rasheed (2005) performed experiments on full-scale con-
crete beams prestressed with straight strands that were then strengthened with CFRP. 
The failure mode observed was CFRP rupture for all beams tested under static and 
fatigue loading. Furthermore, there was no reduction in the CFRP tensile strength at 
static failure after 1 million cycles of fatigue at about 124 MPa (18 ksi) strand stress 
range. However, the CFRP fatigue strength was about 79% of the static ultimate 
strength after 3 million cycles of fatigue at about 248 MPa (36 ksi) strand stress 
range (Rasheed, Larson, and Peterman 2006). On the other hand, GFRP undergoes 
10% loss of static ultimate strength per decade of logarithmic life time (Mandell 
1982). Odagiri, Matsumoto, and Nakai (1997) reported a tension-tension fatigue 
strength of AFRP in the range of 54%–73% of the static ultimate strength after 2 
million cycles of fatigue. Odagiri, Matsumoto, and Nakai (1997) suggested limiting 
the maximum stress to 0.54–0.73 times the static tensile strength to avoid lifetime 
fatigue failure. It is important to note that all these figures apply to unidirectional 
composite with loading along the fiber direction.

Chapter Problems

Problem 3.1
Determine the laminate in-plane stiffness properties of AS-4 carbon/epoxy and 
Kevlar 49/epoxy for 60% fiber volume fraction. Then compare your results with the 
typical values given in the tables of the Delaware Encyclopedia of Composites. Use 
imperial units. The Possion’s ratio for epoxy = 0.37, for AS-4 carbon fiber = 0.17, and 
for Kevlar 49 fiber = 0.32.

Problem 3.2
Determine the laminate in-plane stiffness properties of S-glass/epoxy for 60% fiber 
volume fraction. Then compare your results with the typical values given in the 
tables of the Delaware Encyclopedia of Composites. Use SI units. The Possion’s 
ratio for epoxy = 0.37 and for S-glass fiber = 0.22.

Problem 3.3
A test panel was fabricated using one ply only of carbon fiber/epoxy unidirectional 
FRP system with the wet lay-up technique (Decker 2007). Based on the manufac-
turer’s data sheet of this FRP system, the net fiber area is 0.0065 in.2/in. (0.165 mm2/
mm) width per ply. After the system has cured, five 2-in. (50.8 mm)-wide test cou-
pons are cut from the single-ply panel (CFRP-1 through CFRP-5). The test coupons 
were tested in tension to rupture according to ASTM D3039. The following table 
presents the results of the tension tests. Determine the average and the design tensile 
properties based on the composite laminate and the net fiber area.
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Specimen
Width 
(in.)

Width 
(mm)

Average 
Thickness 

(in.)

Average 
Thickness 

(mm)

Rupture 
Load 
(kips)

Rupture 
Load 
(kN)

Ultimate 
Strain 
(με)

CFRP-1 2.00 50.8 0.0279 0.709 6.13 27.28 12,514
CFRP-2 2.00 50.8 0.0285 0.724 6.14 27.32 14,123
CFRP-3 2.00 50.8 0.0276 0.701 6.16 27.41 12,931
CFRP-4 2.00 50.8 0.0273 0.693 6.18 27.50 11,947
CFRP-5 2.00 50.8 0.0265 0.673 6.04 26.88 12,993
Average 2.00 50.8 0.0276 0.700 6.13 27.28 12,902

Problem 3.4
Using the density values in Table 3.15, determine the ratio of the tensile strength to 
density and tensile modulus to density per inch thickness (per mm thickness) and 
rank the four materials based on the two ratios from highest to lowest. Use Table 3.7 
for GFRP, Table 3.9 for CFRP, and Table 3.12 for AFRP. Assume the tensile strength 
and modulus of steel to be 70 ksi and 29,000 ksi (483 MPa and 200 GPa), respectively.

Problem 3.5
Determine the angle–ply orientation needed to make the following FRP materials 
thermally compatible with concrete in the longitudinal direction.

	 a.	GFRP
	 b.	CFRP
	 c.	AFRP

Take the average α1 and α2 for each from Table 3.16 and take αconcrete = 5.5 × 10−6/°F. 
Indicate which composite of the three is the most thermally compatible with rein-
forced concrete in the longitudinal direction when used as a 0° unidirectional ply.

Problem 3.6
Design a ±θ angle–ply laminate for each FRP composite indicated in Problems 3.5 
to be thermally compatible with concrete in the transverse direction to limit the pos-
sibility of matrix cracking.
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4 Design Issues

4.1  OVERVIEW

The design equations and procedures presented in the next three chapters are 
based on the knowledge and principles put forth by ACI 318-11 (2011) and ACI 
440.2R-08 (2008). Strain compatibility as well as force and moment equilibrium 
must be enforced. Strain at the concrete substrate, at the time of strengthening, 
also needs to be considered. FRP is not allowed to carry compressive stresses, 
according to ACI 440.2R-08. Therefore, FRP used in tension is ignored during 
moment-reversal calculations. Environmental factors need to be incorporated 
into the design, as shown in Chapter 3. Limiting strains in shear and column 
confinement are based on effective strains that are obtained experimentally. 
Strengthening levels are limited by the capacity of the section to carry reasonable 
upgraded loads in case of FRP loss during fire. This applies to shear and column 
confinement as it applies to flexure.

4.2  DESIGN PHILOSOPHY OF ACI 440.2R-08

A limit-state design philosophy is adopted by ACI 440.2R-08. This process defines 
load and resistance factors to various limit states considered, including

	 1.	Ultimate limit state in flexure, shear, and fatigue.
	 2.	Serviceability limit state in short- and long-term deflections and cracking.

For each limit state, different damage or failure modes and related design parameters 
are examined. It is worth mentioning that the load factors and load combinations 
follow the requirements of ACI 318-11 except for strengthening limits in case of fire. 
On the other hand, reduction factors for FRP were calibrated by ACI 440.2R-08 
to produce a reliability index of 3.5 and above. However, the reliability index may 
be reduced to 3–3.5 in the case of high FRP ratio used with low steel ratio. This 
case is almost nonexistent due to the strengthening limits during fire. The values 
of the reliability index of FRP strengthened members were decided based on the 
work of Szerszen and Nowak (2003), which is mainly applicable to unstrengthened 
reinforced-concrete (RC) structures.
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4.3 � STRENGTHENING LIMITS DUE TO LOSS 
OF COMPOSITE ACTION

These limits are assigned to protect the member from failure if the FRP system 
is lost because of fire damage or vandalism. The bare section of member without 
strengthening should be able to resist certain levels of the new or upgraded loads 
without capacity deficiency, as described by Equation (9.1) of ACI 440.2R-08.

	
R S Sn DL LL1.1 0.75

existing new( ) ( )φ ≥ + 	 (4.1)

The dead-load factor is close to unity, since the estimate of the new or upgraded dead 
load can be determined fairly accurately. The live-load factor is selected to exceed 
the statistical mean of annual maximum live-load factor, given by ASCE-SEI 7-10 
(2010) to be 0.5. Once the member survives the damage incident, the FRP is sup-
posed to be repaired or reinstalled.

However, in cases where the live load is sustained on the member for an extended 
period of time, like the cases of library stacks and heavy storage warehouses where 
live load exceeds 150 lb/ft2 (7.2 kN/m2), the live load factor of 0.75 is increased to 
1.0 in Equation (4.1).

4.4  FIRE ENDURANCE

The strengthening level of externally bonded FRP is typically limited by the fire 
endurance of the member with FRP. This is because FRP undergoes severe degra-
dation in bond and mechanical properties at or beyond its glass transition tempera-
ture (Tg), which is typically equal to 140°F–180°F (60°C–82°C) (ACI 440.2R-08).

Deuring (1994) tested CFRP plated beams with and without insulation. He 
showed that the unprotected FRP-strengthened beams achieved around 81 minutes 
of fire endurance. Identical beams with CFRP protected by a 40-mm thick (1.57-in. 
thick) calcium-silicate insulation plates endured fire for a longer 146 minutes. It is 
important to note that bond between concrete and CFRP was lost within the first few 
minutes of fire exposure when CFRP was not protected.

Blontrock, Taerwe, and Vandevelde (2001) tested CFRP-strengthened beams 
protected with different insulation boards under full service load plus ISO 834 fire-
curve exposure (1975). They observed that the best fire endurance can be accom-
plished if U-shaped insulation boards are installed to the soffit and sides of beams.

Williams et al. (2008) tested CFRP-strengthened RC T-beams with U-shaped 
vermiculite/gypsum (VG) insulation 25–38 mm thick (1–1.5 in. thick) subjected to 
uniformly distributed service load and ASTM E119 standard fire curve (2002). The 
strengthened RC T-beams were able to withstand the fire exposure for up to 4 hours. 
The results of this test and the three-dimensional (3-D) FE analysis of the same test 
(Hawileh et al. 2009) showed that the insulation controlled the temperature trans-
ferred to steel and FRP below the critical temperature values.

ACI 440.2R-08 allows the extension of the concepts established 
by ACI 216R-89 suggesting limits to maintain safety against collapse due to fire. 
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Steel and concrete strengths are reduced at elevated temperature according to ACI 
216R-89, while FRP strength is ignored. The resistance of the member at elevated 
temperature Rnθ may be determined based on testing or ACI 216R-89 guidelines. 
Equation (9.2) of ACI 440.2R-08 needs to be satisfied:

	 R S Sn DL LL= +θ 	 (4.2)

where SDL and SLL are the load effects of the upgraded loading due to the addition 
of FRP.

Glass transition temperature Tg is conservatively taken as the critical temperature 
below which FRP needs to be kept to sustain its functionality. More research is 
needed to accurately identify critical temperatures for different types of FRP, as seen 
in Figure 4.1 (Naser et al. 2014).

4.5  OVERALL STRENGTH OF STRUCTURES

It is the responsibility of the designer to make sure that the overall strength of struc-
ture is adequate under different upgraded loads for various strengthened members. 
Slab-punching shear, column capacity, and footing-bearing capacity must be satis-
fied when slabs and beams are upgraded. In most of the cases, this works out well 
due to the reduction in dead- and live-load factors required by ACI 318-11 and ACI 
440.2R-08 compared to those required by early versions of ACI 318 code. An exam-
ple on strengthening of a reinforced-concrete slab designed according to ACI 318-83 
is presented in Chapter 5.
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FIGURE 4.1  Experimental and numerical comparison of heat progression in CFRP-
strengthened T-beams under fire (Naser et al. 2014. Courtesy of Multi-Science Publishing).
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4.6 � LOADING, ENVIRONMENTAL, AND DURABILITY 
FACTORS IN SELECTING FRP

4.6.1  Creep-Rupture and Fatigue

CFRP systems are highly tolerant to fatigue under cyclic loading and to creep rup-
ture under sustained loading. GFRP systems are more vulnerable to these loading 
conditions. Accordingly, research has yielded that glass can sustain 0.3 times its 
ultimate strength, while aramid can sustain 0.5 of its ultimate strength and carbon 
can sustain 0.9 of its ultimate strength without a creep-rupture problem (Yamaguchi 
et al. 1997; Malvar 1998).

The stress level in FRP is computed under a total moment consisting of all sustained 
loading plus the maximum fatigue loading, as shown in Figure 4.2, using a linear elas-
tic analysis. Values of sustained and cyclic stress levels are given in equation (4.3) by 
using a 0.6 reduction factor for the actual creep-rupture limits mentioned previously.

	

f

f

f

f

f s

fu

fu

fu

0.2 (for GFRP)

0.3 (for AFRP)

0.55 (for CFRP)

, = 	 (4.3)

4.6.2 I mpact Resistance

GFRP and AFRP systems have higher impact resistance than CFRP systems. This 
may be attributed to the higher strain to failure they can sustain.

4.6.3 A cidity and Alkalinity

Dry carbon fiber is known to be resistant to alkalinity and acidity, while dry glass 
fiber is susceptible to degradation when subjected to these environments. On the 

Time

FRP Stress

Sustained Load

Fatigue Load

ff,s

FIGURE 4.2  Schematic of the level of service FRP stress in terms of sustained and fatigue 
loading.
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other hand, the resin matrix protects the fibers in general from alkalinity and acid-
ity. However, it may only retard deterioration of glass fiber. Accordingly, carbon is 
the fiber of choice in applications having high alkalinity and high relative humidity.

4.6.4 T hermal Expansion

As stated previously, the coefficient of thermal expansion varies drastically between 
the fibers, matrix, and FRP system at various orientations. Along the fiber direction, 
CFRP has a coefficient of thermal expansion of zero while GFRP has a coefficient of 
thermal expansion comparable to concrete. The coefficient of thermal expansion of 
polymers is around five to seven times that of concrete. Thus, the transverse direction 
of an FRP system has much higher coefficients of thermal expansion. Differences in 
thermal expansion may potentially affect bond with concrete. However, this effect is 
limited for a temperature range of ±50°F (±28°C) (ACI 440.2R-08).

4.6.5 E lectric Conductivity

GFRP and AFRP are known to be electric insulators. On the other hand, CFRP is 
conductive and should therefore be kept away from steel to avoid potential corrosion.

4.6.6  Durability

This is a subject of ongoing research. It is worth mentioning here that the use of 
FRP systems to completely seal the concrete surface is cautioned wherever moisture 
vapor transport is anticipated. Whenever possible, exposed concrete surfaces need to 
be allowed to enable moisture escape.

Chapter Problems

Problem 4.1
A library building has a simply supported rectangular concrete beam reinforced 
with four No. 6 bars in tension and two No. 3 bars in compression and No. 3 stirrups 
at 6 in. (152 mm) on center in shear. The details of the beam are shown in the follow-
ing table. As part of the library upgrade, the beam is subjected to a 40% increase in 
live load, as shown in the table. Determine the adequacy of the bare-beam section to 
resist the upgraded loads in flexure and shear in case of fire.

Span 20 ft 6.1 m

B 12 in. 305 mm

H 20 in. 508 mm

f ′c 4 ksi 27.6 MPa

fy 60 ksi 414 MPa

Top bars #3 ϕ = 9.5 mm

Main bars #6 ϕ = 19 mm

WDL 0.9 k/ft 13.14 kN/m

WLL 0.9 k/ft 13.14 kN/m
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Problem 4.2
Derive the following expression of the elastic depth to the neutral axis of the cracked 
section using linear elastic cracked section analysis considering the contribution of 
sectional FRP:
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Problem 4.3
Derive the following expression for the elastic stress level in steel under service load 
considering the contribution of sectional FRP. Note that this expression is given by 
Equation (10.14) of ACI 440.2R-08:
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Problem 4.4
Derive the following expression for the elastic stress level in FRP under service load 
considering the contribution of sectional steel and FRP. Note that this expression is 
given by Equation (10.15) of ACI 440.2R-08.
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Problem 4.5
Determine the elastic stress level in steel of the beam in Problem 4.1. Note that 
50% of the original live load existed on the beam during strengthening. The beam 
was strengthened using two plies of CFRP with the properties listed in the follow-
ing table. Compare the steel stress level to the limit set by Equation (10.6) of ACI 
440.2R-08.

12"

20"

1.5"

2#3
#3 @ 6" c/c

4#6 f ć = 4 ksi
fy = 60 ksi

20 ft

WDL + WLL

FIGURE 4.P.1
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Material

Modulus of 
Elasticity

E, ksi (GPa)

Ultimate 
Strain

εu, in./in. 
(mm/mm)

Ultimate 
Strength

fu, ksi (MPa)

Ply 
Thickness

tf, in. (mm)

Carbon FRP (sheets) 33,000 (227) 0.014 (0.014) 462 (3187) 0.0065 (0.165)

Problem 4.6:
For the beam in Problems 4.1 and 4.5, determine the elastic stress level in FRP. Note 
that 50% of the original live load existed on the beam during strengthening. The beam 
was strengthened using two plies of CFRP with the properties listed in problem 4.5. 
Compare the FRP stress level to the limit set by Equation (4.3) of this chapter.
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5 Flexural Strengthening 
of Beams and Slabs

5.1  OVERVIEW

External bonding of carbon FRP reinforcement to the tension face of a concrete 
beam to increase its flexural capacity has been introduced by Meier (1987). Since 
then, a large volume of literature has been added to qualify this strengthen-
ing technique. The extension of this technique to near-surface-mounted FRP 
bars and strips should also be noted (Alkhrdaji, Nanni, and Mayo 2000). These 
strengthening techniques resulted in flexural capacity increases of 20%–200% 
compared to the unstrengthened beams. However, the strengthening limits 
imposed by ACI 440.2R-08 (2008) restrict the strengthening ratio up to about 
40%–50%. More research on the insulation of FRP under fire is needed to waive 
the need for these strengthening limitations and allow higher strengthening 
ratios to be implemented.

5.2  STRENGTH REQUIREMENTS

It is widely established that the design nominal flexural strength of a strengthened 
section reduced by the strength reduction factor should be equal to or greater than 
the factored moment of the upgraded loads:

	 M Mn uφ ≥ 	 (5.1)

The nominal strengthened moment capacity Mn( )  with steel reinforcement and FRP is 
to be determined using

•	 Strain compatibility
•	 Internal force equilibrium
•	 Internal moment equilibrium
•	 Expected failure mode
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5.3  STRENGTH REDUCTION FACTORS

The strength reduction factor of a strengthened section is given by Equation (10.5) 
of ACI 440.2R-08 based on the requirements of ACI 318-05 (2005). This factor 
ϕ is a function of the net tensile strain in the most extreme tension steel layer at 
nominal strength:

	

t

t sy

sy
sy t

t sy

0.9 for 0.005

0.65
0.25

0.005
for 0.005

0.65 for

( )
φ =

ε ≥

+
ε − ε

− ε
ε < ε <

ε ≤ ε

	 (5.2)

The above values are set to ϕ = 0.9 for a tension-controlled failure (ductile) and to 
ϕ = 0.65 for a compression-controlled failure (brittle without yielding), while ϕ is 
determined from the linear interpolation between the two extremes in the transition 
zone, as seen in Figure 5.1.

For Grade 60 reinforcement, ε = ≈sy 0.00260 ksi
29,000 ksi . Thus for c

dt
0.9, 0.375φ = ≤ , 

and for c
dt

0.65, 0.6φ = ≥ . In the transition, d
c
t0.65 0.25 5

3φ = + − . In addition to 
the factor ϕ, another strength reduction factor for FRP (Ψf ) is multiplied by the 
flexural contribution of FRP reinforcement Mnf( ), as shown in Equation (10.13) of 
the ACI 440.2R-08:

	
= −

β
+Ψ −

β
M A f d

c
A f d

c
n s s f f fe f

2 2
1 1 	 (5.3)

This Ψf factor is taken as 0.85 based on the reliability analysis of the experimentally 
calibrated statistical values to mainly account for the less predictable failure mode of 
delamination of FRP reinforcement (Okeil, Bingol, and Alkhrdaji 2007).

Net Steel Strain at Ultimate

φ factor

Transition Zone Tension Controlled Zone

0.90

0.65

0.005

Compression
Controlled
Zone

εsy

FIGURE 5.1  Variation of ϕ factor as a function of the extreme net steel strain.
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5.4  FLEXURAL FAILURE MODES

For FRP-strengthened reinforced concrete section, the following failure modes are 
likely to take place in flexure (GangaRao and Vijay 1998):

	 1.	Ductile crushing of concrete: crushing of concrete in compression after 
yielding of tensile steel (desirable failure mode)

	 2.	Brittle crushing of concrete: crushing of concrete in compression before 
yielding of tensile steel (undesirable failure mode)

	 3.	Rupture of FRP: rupture of FRP reinforcement after yielding of tensile steel 
(desirable failure mode)

	 4.	Cover delamination: Shear/tension delamination of the concrete cover start-
ing at the FRP curtailment (not covered by ACI 440.2R-08)

	 5.	Debonding of FRP: The intermediate crack-induced debonding of FRP 
reinforcement (covered by ACI 440.2R-08)

5.4.1  Ductile Crushing of Concrete

This is the failure mode in which concrete reaches the limit of useful compressive 
strain of 0.003 after yielding of tension reinforcement ε > εs sy . It is a desirable fail-
ure mode because it involves a warning sign represented by the ductile yielding of 
steel. It competes with the debonding failure mode, which alternatively takes place 
in sections moderately strengthened with FRP. If the FRP is anchored with trans-
verse FRP U-wraps or stirrups, this failure mode would be the dominant one, since 
debonding and cover delamination are prevented or delayed by the FRP U-wraps 
(Rasheed et al. 2010).

5.4.1.1  Flexural Strengthening of a Singly Reinforced Section
For the concrete crushing failure mode after yielding of primary steel reinforcement 
(Figure 5.2):

	 Strain compatibility: 
c d
cu cu f

f
f fe bi, where

ε
=
ε + ε

ε = ε + ε 	 (5.4)

d

b

df

εs > εy

εcu

C

εfAf

As

c a

Ts

Mu

Tf

FIGURE 5.2  Singly reinforced cross section with strain distribution and force profile.
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	 Force equilibrium: = + β = + εC T T f b c A f A Es f c s y f f fe0.85 1 	 (5.5)

	  

M T jd T jd A f d
c

A E d
c

u s s f f s y

f f f fe f

Moment equilibrium:
2

2

1

1

= φ + φ = φ −
β

+ φΨ ε −
β

	 (5.6)

where εbi is the strain in the extreme fiber of concrete substrate at the time of 
strengthening.

Design solution approach by ACI 440.2R-08:
	 1.	 Assume Af

	 2.	 Assume c and iterate to satisfy force equilibrium and strain compatibility
	 3.	 Compute Mnφ  and compare it with −Mu required

	 4.	 Adjust Af and repeat steps 1–3 until M Mn u requiredφ ≥ −

Design solution approach by direct equations:
The design solution for this failure mode is possible to determine in closed 
form (Rasheed and Pervaiz 2003):
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0.003
0.003 1

	 (5.7)

	 ε = ε − ε ≤ εfe f bi fd 	 (5.8)

where εfd is the debonding strain limit of FRP

	
= +f ba A f A fc s y f fe0.85 	 (5.9)

Solving for Af in Equation (5.9):
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Dividing Equation (5.12) by f bdc f
2φ ,
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Substituting Equation (5.11) into (5.13) and rearranging the terms,

	

− −
−Ψ
Ψ

+
Ψ

=
a
d

Q
a
d

Q
f

f

f f f

2 1.176
1 2.353

0

2

1 2 	 (5.14)
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When f 0.85Ψ =  is substituted into Equation (5.14),
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Now, to establish a range of values for Q1,

	

= −

= −

ρ = = × < = ×

ρ = = × > = × ×

ρ = ρ = × β
+

ε ≈

= × × ×
+

=

− −

− − −

3000 8000 psi

40 75 ksi

3 3,000
75,000

2.19 10
200

75,000
2.67 10 controls

or

3 8,000
40,000

6.71 10
200

40,000
5.0 10 , 6.71 10 controls

0.75 0.75 0.85
87

87
0.004 (ductile failure)

0.75 0.85 0.65
8,000
40,000

87
87 40

0.0568

,min
3 3

,min
3 3 3

,max 1

f

f

f

f f
for

c

y

s

s

s b
c

y y
st



84 Strengthening Design of Reinforced Concrete with FRP

	

d

d

Q

Q

Q

Q

Q B

B Q

B

f

or

0.75 0.85 0.85
3,000
75,000

87
87 75

0.01164

0.8 0.9

0.01164
75
3

0.9 0.262 controls(upper bound)

2.67 10
75
3

0.8 0.0534

0.0568
40
8

0.9 0.2556

5.0 10
40
8

0.8 0.0268 controls(lower bound)

0.0268 0.262 1.946 1.994 close to 2

where 2 0.208

Assuming 2

1

1
3

1

1
3

1

1

= × × ×
+

=

= −

= × × =

= × × × =

= × × =

= × × × =

< < = −

= −

=

−

−

	

a

d
Q

f
f1 1 2.77 for 0.852= − − Ψ = 	 (5.19)

	

a

d
Q

f
f1 1 2.35 for 1.02= − − Ψ = 	 (5.20)

Example 5.1: Design

Solve Example 15.3 of ACI 440.2R-08 using the direct approach (Figure  5.3). 
The problem statement from the design guide goes as follows: A simply sup-
ported reinforced concrete beam is located in an unoccupied warehouse. It is 
required to be strengthened by a 50% increase in its live-load carrying capacity. 

12"

24" 21.5"

3#9
f ć = 5 ksi

fy = 60 ksi

24 ft

WDL +WLL

FIGURE 5.3  Example 15.3 of ACI 440.2R-08 showing the beam profile and the cross-
section details.
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The beam is assumed to have sufficient shear strength and adequate deflec-
tion and crack-control serviceability requirements while resisting the additional 
loads. Design a flexural strengthening system to resist the upgraded moment 

294.4 399= − = −M k ft kN mu . The beam parameters are given in Table 5.1.

Solution:

Direct approach:

Use df = h = 24 in.

294.4

3in
12 21.5

0.01163
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0.9 5 12 24
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TABLE 5.1
Beam Parameters of Example 15.3 
of ACI 440.2R-08
Span 24 ft 7.32 m

B 12 in. 305 mm

H 24 in. 609.6 mm

d 21.5 in. 546 mm

f ′c 5 ksi 34.5 MPa

fy 60 ksi 414 MPa

Main bars #9 ϕ = 28.6 mm

ϕMn 266 k-ft 361 kN-m
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5360 0.01116 59.82 ksi

0.85 0.85
5

59.82
3.9
21.5

0.01163
60

59.82
0.001223

0.001223 12 21.5 0.316 in

0.316
0.04

7.9 in. Use 8" with one layer of FRP

0.083
5000 psi

1 5,360,000 psi 0.04
0.0127 0.01116

No Debonding O.K.

ACI 440.2R-08 used 2 layers of FRP of full beam width ( 0.96 in )
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Example 5.2: Analysis

Use the results of Example 5.1 to check the moment capacity of the strengthened 
section 294.4 399= − = −M k ft kN mu .

Solution:

Using force equilibrium,

0.85
0.003

0.003

40.8 3 60 0.32 5360
0.072

0.00361

40.8 173.808 123.49 0

'
1

2

β = + ε = + − − ε

= × + × × −

− − =

f b c A f A E A f A E
d

c

c
c

c c

c s y f f fe s y f f
f

bi

( )

=
± + × ×

×
=

= ε = =

= × × − + × × × −

= = ≈
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a f
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173.808 173.808 4 40.8 123.49
2 40.8

4.88 (positive root)

3.904, 0.011144 59.73 ksi

0.9 3 60 21.5
3.904

2
0.85 0.32 59.73 24

3.904
2

3489.16 k-in 290.76 k-ft 294.4 k-ft

Why the small difference? Because of rounding the constants of Equation(5.19)

Check the steel strain:

0.003
4.88

21.5 4.88 0.0102 0.005 0.9 . .

2
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Example 5.3: Analysis

For the beam shown in Figure  5.4, determine the increase in moment-carrying 
capacity n

n

M
M . Neglect the compression reinforcement. The CFRP covers the tension 

face of the beam and is wrapped 6" up the two sides of the beam section, as shown 
(Rasheed et al. 2010). The CFRP sheets have the following properties:

M-Brace CF130
Two plies

440 ksi based on fiber net area

0.014

33,000 ksi

t 0.0065 in

=

ε =

=

=

f

E

fu

fu

f

sheet

B 10 in. 254 mm

H 18 in. 457.2 mm

f ′c 5 ksi 34.5 MPa

fy 83.5 ksi 576 MPa

Main bars #6 ϕ = 19 mm

Cover 1 in. 25.4 mm

Solution:

Since these examples are intended to target ductile crushing failure, there is no 
need to use the environmental factors (Ce) of ACI 440.2R-08.

d d

A

d
t t

t t

A

t

s

f

f

18 1"
3
8

1
2

6
8

16.25"

4 0.44 1.76 in

2 (10 18 2 6 15)
2 (10 2 6 )

16.36"

(10 0.0065" 2 6 0.0065) 2 plies 0.286 in

2

2

= = − − − × =

= × =

=
× × × + × × ×

× + ×
=

= × + × × × =

10"

18"

1.0"

2#3
#3 @ 6" c/c

4#6

6"

FIGURE 5.4  Example 5.3 showing the cross-section details.
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Assume ductile crushing failure mode:

0.85
               Equation (10.12) of ACI 440.2R-08

1
=

+

β
c

A f A f
f b

s y f fe

c

Using Equation (2.17):

1.05 0.05
5000
1000

0.81β = − × =

0ε =bi  The beam was not loaded during strengthening (Rasheed et al. 2010)

ε =
−

− ε

=
−

d c
c

c
c

fe
f

bi0.003              Equation (10.3) of ACI 440.2R-08

     0.003
16.36

33,000 0.003
16.36

99
16.36

= ε = ×
−

=
−

f E
c

c
c

c
fe f fe

Force equilibrium:

0.85 5 0.8 10 1.76 83.5 0.286 99
16.39

× × × = × + ×
−

c
c

c

Multiply the equation by c:

c c c

c c

c

f
nE t

C

d c
c

fe fd

fd
c

f f
e fu

s

34 146.96 463.22 28.31 0

34 118.65 463.22 0

118.65 118.65 4 34 ( 463.22)
2 34

5.83 in

0.003
16.36 5.83

5.83
0.00542

0.083 0.083
5000

2 33 10 0.0065
0.00896 0.9 0.01197

0.003 0.003
16.25 5.83

5.83
0.00536 0.005 0.9

2

2

2

6

− − + =

− − =

=
+ − × × −

×
=

ε =
−

= ≤ ε

ε = =
× × ×

= ≤ ε =

ε =
−

=
−

= > φ =

Ductile crushing failure confirmed

33,000 0.00542 178.86 ksi

2 2

1.76 83.5 16.25
0.8 5.83

2

0.85 0.286 178.86 16.36
0.8 5.83

2

2655.34k-in. 221.30 k-ft

s y
1 1

= × =

= −
β

+ Ψ −
β

= × × −
×

+ × × × −
×

= =

f

M A f d
c

A f d
c

M

M

fe

n f f fe f

n

n
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Compare to 247.6 k-ft from experiment.
Why the difference? Contribution of compression steel and steel strain harden-

ing in tension as well as Ψf = 0.85.
Unstrengthened beam capacity (Mn):

=
×

× × ×
=

= = < φ =

= −
β

= × × −
×

=

=

c

c
d

A f d
c

t

1.76 83.5
0.85 5 0.8 10

4.32 in.

4.32
16.25

0.266 0.375 tension controlled failure 0.9

M
2

1.76 83.5 16.25
0.8 4.32

2
2134.15 k-in.

177.85 k-ft

n s y
1

Compare to 180.4 k-ft from the control beam in experiment.
Why the small difference? Contribution of compression steel and steel strain 

hardening in tension.

M

M
n

n

S.R.
221.3

177.85
1.244= = =

From the experiments:

= =S.R.
247.6
180.4

1.373

Example 5.4: Design

For the beam given in Example 5.3, determine the CFRP area needed to increase 
the total section moment capacity by 25%.

Solution:

Unstrengthened beam capacity:

0.9 2134.15 k-in 1920.74 k-in

M 1.25 2400.92 k-in

= × =

= × =

M

M

u

u u

d h

A
bd

f

s
s

Assume 18" (CFRP sheets bonded only to soffit).

1.76
10 16.25

0.01083

= =

ρ = =
×

=

0.01083
83.5

5
16.25

18
0.1633

2400.92
0.9 5 10 18

0.1633 0.85
16.25

18
0.156

1

2 2 1 2

= ρ = × × =

=
φ

+ Ψ − =
× × ×

+ − =

Q
f
f

d
d

Q
M
f bd

Q
d
d

s
y

c f

u

c f
f

f
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a
d

Q
a
d

Q
f f

2 0.208 2.77 0
2

1 2( )− − + =

a
d

a
d

a
d

a

f f

f

s

1.966 0.4321 0

1.966 1.966 4 0.4321
2

0.252

4.54 in

0.003
16.25

4.54
0.8

4.54
0.8

0.00559 0.005

2

2

− + =

=
− − ×

=

=

ε =
−

= >

ε =

β

− =

ε = ε − ε = < ε =

= × =

ρ = − ρ = × × − × =

= × × =

= =
×

= > =

d
a

f

f
f

a
d

f
f

A

d

b
A
nt

f
f

fe f bi fd

fe

f
c

fe
s

y

fe

f

f

f
f

f

0.003
0.003 0.00652

0.00652 0.00896 (assuming 2 layers of FRP).

33,000 0.00652 215.15 ksi

0.85 0.85
5

215.15
4.54

16.25
0.01083

83.5
215.15

0.001313

0.001313 10 16.25 0.213 in

Why is it smaller than 0.286 in in Example 5.3?

Because is larger (18").

0.213
2 0.0065

16.42 in b 10" N.G.

Either wrap around the sides or use 3 layers.

1

2

2

b

b

f

f

fd fe

Using four layers and a partial layer:

3 10 0.0065 0.0065 0.213

2.77 in. 3.0 in.

check 0.083
5000

3 33 10 0.0065
0.00732 O.K.6

× × + × =

= ≈

ε =
× × ×

= > ε

The design in Figure 5.5 is more economical (less FRP area) than the wrapped 
design in Example 5.3. However, the wrapped design has its advantages in confin-
ing the cover area and reducing the interfacial shear stresses.
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Example 5.5: Design

Redo the strengthening design of Example 5.4 using near-surface mounted (NSM) 
CFRP tape (Figure 5.6) with the following properties:

Aslan 500
Dimensions: 0.63 in. x 0.079 in.
ffu = 300 ksi
Ef = 18,000 ksi
ε =fu 0.0167

M

d h
b

Q
f
f

d
d

Q

u

f
f

s
y

c f

2400.92 k-in

2
18"

0.63
2

17.69"

0.01083
83.5

5
16.25
17.69

0.166

2400.92
0.9 5 10 17.69

0.166 0.85
16.25
17.69

0.159

1 '

2 2

=

= − = − =

= ρ = × × =

=
× × ×

+ − =

2 0.208 0.166 2.77 0.159 0

1.965 0.4404 0

2

2

( )− − × + × =

− + =

a
d

a
d

a
d

a
d

f f

f f

18"

1.0"

10"

2#3
#3 @ 6" c/c

4#6

3"

FIGURE 5.5  Example 5.4 showing the FRP design details.

0.63"

0.079"

FIGURE 5.6  CFRP strip for NSM application.
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B

a
df

2

1 1 0.4404 0.252

≈

= − − =

4.46 in c 5.57 in

0.003
16.25 5.57

5.57
0.0057 0.005 ductile crushing

0.003 17.69
5.57

0.003 0.00652

0.00652 0.7 0.7 0.95 0.0167 0.0111

= =

ε =
−

= >

ε =
×

− =

ε = ε − ε = < ε = ε = × × =

a

s

f

fe f bi fd fu

18,000 0.00652 117.36 ksi= × =ffe

f
f

a
d

f
f

A bd

f
c

fe
s

y

fe

f f

0.85 0.85
5

117.36
4.46

16.25
0.01083

83.5
117.36

0.00223

0.00223 10 16.25 0.363 in2

ρ = − ρ = × × − × =

= ρ = × × =

0.63 0.079 0.0498 in

# of strips
A

7.3 strips

strip
2

strip

= × =

= =

A

Af

Use eight strips in four grooves with 2-in. spacing between the grooves. According 
to ACI 440.2R-08, Figure 13.4, the groove dimensions are 3 × 2 × 0.079 = 0.474" by 
1.5 × 0.63 = 0.95". However, the same number of CFRP strips was successfully used in 
a beam with cut grooves of 0.25" × 0.75", as seen in Figure 5.7 (Rasheed et al. 2010).

CFRP strips
(2 per groove) 

CFRP strips
(1 per groove) 

2 in.
10 in.

18 in.

FIGURE 5.7  Example 5.5 showing the CFRP NSM design details.
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5.4.1.2  Flexural Strengthening of a Doubly Reinforced Section
For the ductile concrete crushing failure mode, εcu of 0.003 is reached after the 
yielding of tension reinforcement. The effective strain in the FRP is given by 
Equation (10.3) of ACI 440.2R-08:

	

d c
c

fe
f

bi fd0.003ε =
−

− ε ≤ ε 	 (5.21)

See Figure 5.8.
From strain compatibility:

	

c d
c

s 0.003ε =
−

	 (5.22)

Invoking force equilibrium:
+ = +C C T Ts f

	 f b c A f A f A fc s s s y f fe0.85 1β + = + 	 (5.23)

	

f
f

a
d

f
f

f
f

f
f

f
c

fe
s

y

fe
s

s

fe
f gly s

s

fe
0.85

sin( )ρ = − ρ + ρ = ρ + ρ 	 (5.24)

Using moment equilibrium:

	

= + +

= φ −
β

+ φΨ −
β

+ φ
β

−

M T jd T jd C jd

M A f d
c

A f d
c

A f
c

d

u s s f f s

u s y f f fe f s s
2 2 2
1 1 1

	 (5.25)

Dividing Equation (5.25) by 2φf bdc f ,

	 2 2 22 2 2 2φ
= ρ − + Ψ ρ − + ρ −

M
f bd

f
f

d
d

d
a f

f
d
d

d
a f

f
d
d

a
du

c f
s

y

c f
f f

fe

c f
f s

s

c f
	 (5.26)

df d

d´

C aε ś

εcu

εs>εy

C´

C

Mu

εf

Aś

As

b Af
Tf

Ts

FIGURE 5.8  Doubly reinforced cross section with strain distribution and force profile.
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Substituting Equation (5.24) into Equation (5.26) and rearranging,

	

a
d

Q Q
a
d

Q
f f

2 0.208 2.77 0
2

1 1 2( )− − − + = 	 (5.27)

where

	
Q

f
f

d
d

s
y

c f
1 = ρ 	 (5.28)

	
Q

f
f

d
d

s
s

c f
1 = ρ 	 (5.29)

	
= − Ψ −Q Q Q

d
d

Qf
f

and from Equation (5.16)2 2 1 2 	 (5.30)

	
B

a
d

Q
f

Assuming 2 1 1 2.77 2≈ = − − 	 (5.31)

Q2  in Equation (5.30) may be directly applied to find a
df

 if compression 
steel has yielded (which is typically assumed and then checked using the strain 
compatibility, Equation [5.22]). If this yielding happens, the solution is com-
plete. Otherwise, Equation (5.22) is substituted into Equations (5.29) and (5.30), 
resulting in a cubic expression,

	
2 2.77 2.77 0

3 2

2 2 2
1( )− + + −
β

=
a
d

a
d

Q
a
d

Q Q
d

df f f f
	 (5.32)

where

	 Q Q
f

d
d

d
d

s
c f

f
f

87
2 2= − ρ Ψ −   when U.S. customary units are used	 (5.33a)

	 Q Q
f

d
d

d
d

s
c f

f
f

600
2 2= − ρ Ψ −   when S.I. units are used	 (5.33b)

Similar equations were first derived by Rasheed and Pervaiz (2003) for doubly 
reinforced sections with Ψf = 1.0.

Example 5.6: Analysis

Redo Example 5.3 assuming a doubly reinforced concrete section and considering 
f ′y = 83.5 ksi as well.
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Solution:

2 0.11 0.22 in.2= × =As

f
E

d

y
y

s

83.5
29000

0.00288

1
3
8

1
2

3
8

1.563

ε = = =

= + + × =

Assume ductile crushing failure mode:

0.85 1β + = +f b c A f A f A fc s s s y f fe

Assume yielding of compression steel:

c
c

c
0.85 5 0.8 10 0.22 83.5 1.76 83.5 0.286 99

16.36
× × × + × = × + ×

−

c c c c

c c

c

34 18.37 146.96 463.22 28.31 0

34 100.28 463.22 0

5.45 in

2

2

+ − − + =

− − =

=

0.003
5.45

5.45 1.563 0.00214 0.00288( )ε = × − = <s Compression steel does 

not yield

Redo the force equilibrium accordingly:

c
c

c
c

c
34 0.22 87

1.563
146.96 28.31

16.36
+ ×

−
= +

−

c c c c

c c

c

34 19.14 29.92 146.96 463.22 28.31

34 99.51 493.14 0

5.54 in

2

2

+ − = + −

− − =

=

0.003
16.36 5.54

5.54
0.00586 0.00896 0.9 0.01197ε =

−
= < ε = < ε =Cfe fd e fu

f

f

fe

s

s

33,000 0.00586 193.38 ksi

0.003
5.54 1.563

5.54
0.002154

62.45 ksi

= × =

ε =
−

=

=

M A f d
c

A f d
c

A f
c

dn s y f f fe f s s
2 2 2
1 1 1= −
β

+ Ψ −
β

+
β

−

Mn 1.76 83.5 16.25
0.8 5.54

2
0.85 0.286 193.38 16.36

0.8 5.54
2

0.22 62.45
0.8 5.54

2
1.563 2736.33 k-in 228.03 k-ft

= × × −
×

+ × × × −
×

+ × ×
×

− = =
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Compare to 247.6 k-ft from experiment.
Why is there a difference? The actual Ψf = 1.0, and the small strain hardening 

in tension steel is ignored here. Considering Ψf = 1.0,

Mn 1.76 83.5 16.25
0.8 5.54

2
1.0 0.286 193.38 16.36

0.8 5.54
2

0.22 62.45
0.8 5.54

2
1.563 2853.67 k-in 237.81 k-ft

= × × −
×

+ × × × −
×

+ × ×
×

− = =

The small difference that still exists is due to some strain hardening in the tension 
steel (Rasheed et al. 2010).

Example 5.7: Design

Chaallal, Nollet, and Perraton (1998) presented a CFRP flexural strengthening 
design example of a doubly reinforced simple beam (Figure 5.9). They designed 
the beam using an iterative approach. The reinforced concrete section details and 
material properties are shown below.

Solution:

Assume ductile crushing failure mode
Assume yielding of compression steel at failure
Assume df = h = 600 mm

2400
350 535

400
30

535
600

0.1524

400
350 535

400
30

535
600

0.0254

500 10
0.9 30 350 600

0.1524 0.85
535
600

0.0254 0.85
58

600
0.1215

1

1

2 2 1 1

6

2

= ρ =
×

× × =

= ρ =
×

× × =

=
φ

+ Ψ − − Ψ −

=
×

× × ×
+ − − − =

Q
f
f

d
d

Q
f
f

d
d

Q
M
f bd

Q
d
d

Q
d
d

s
y

c f

s
s

c f

u

c f
f

f
f

f

f ć = 30 MPa                        fy = 400 MPa ff u = 2400 MPa
Ec = 24647 MPa Es = 200 GPa Ef = 150 GPa

As = 2400 mm2 εbi = Zero
tf = 0.17 mm

εcu = 0.003
β1 = 0.833 A's = 400 mm2
Mu =380 KN.m 

Af350 mm

60
0 

m
m

53
5 

m
m

58
 m

m CFRP PropertiesSteel PropertiesConcrete Properties

Mu = 500 KN.m

FIGURE 5.9  Design of a doubly reinforced beam example by Chaallal, Nollet, and Perraton 
(1998).
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a
d

a
d

a
d

a c

c d
c

f f

f

s

1.974 2.77 0.1215 0

1.974 1.974 4 2.77 0.1215
2

0.1887

113.25 mm 135.95 mm

0.003 1.72 10
400

200,000
2 10 No yielding N.G.

2

2

3 3

− + × =

=
− − × ×

=

= =

ε =
−

= × < = ×− −

500 10
0.9 30 350 600

0.1524 0.85
535
600

0.1406

600
0.1406

400
350 535

600
30

535
600

0.85
58

600

0.1119

2 2.77 0.1119 2.77 0.1406 0.1119
0.833 58

600
0

2 0.31 6.4 10 0

2
c f

2 1
f

6

2

2 2

3 2

3 2
3

( )

=
φ

+ Ψ − =
×

× × ×
+ −

=

= − ρ Ψ − = −
×

× × −

=

− + × + − ×
×

=

− + + × =−

Q
M
f bd

Q
d
d

Q Q
f

d
d

d
d

a
d

a
d

a
d

a
d

a
d

a
d

u
f

s
c f

f
f

f f f

f f f

0.1893 By finding the smallest positive root using Excel Goal Seek= →
a
df

a c113.58 mm
113.58
0.833

136.35 mm= = =

f

s

s

0.003
136.35 58

136.35
1.724 10

200000 1.724 10 344.78 MPa

3

3

ε =
−

= ×

= × × =

−

−

fe

fd

0.003
600 136.35

136.35
0 0.0102 0.009944

0.41
30

2 150,000 0.17
0.009944

ε =
−

− = ≈

ε =
× ×

=

150,000 0.0102 1,530 MPa

0.003
535 136.35

136.35
0.00877 0.005

so 0.9

= × =

ε =
−

= >

φ =

ffe

s

0.85

0.85
30

1530
113.58

535
2400

350 535
400

1530
400

350 535
344.78
1530

6.688 10 4

ρ = − ρ + ρ

= × × −
×

× +
×

× = × −

f
f

a
d

f
f

f
f

f
c

fe
s

y

fe
s

s

fe
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125.23 mm

125.23
2 0.17

368.32 mm 350 mm

2 0.17 350 0.17 125.23

36.7 mm 40mm

2= ρ × =

= =
×

= >

× × + × =

= ≈

A bd

b
A
nt

b

b

f f

f
f

f

f

f

Either wrap the two layers 10 mm up the sides or add a 40-mm partial layer to the 
soffit, as shown in Figure 5.10.

The effective depth of the wrapped CFRP layers in the second alternative is

df
600.17 350 0.34 2 595 10 0.34

350 0.34 2 10 0.34
599.89 600 mm O.K.=

× × + × × ×
× + × ×

= ≈

5.4.2 B rittle Crushing of Concrete

This is the failure mode in which concrete reaches the limit of useful compressive 
strain of 0.003 before yielding of tension reinforcement (i.e., εs < εy). It is not a desir-
able failure mode because it does not involve a warning sign at failure. Therefore, 
ACI 440.2R-08 reduces the ϕ factor to 0.65 to make this failure mode less likely to 
occur. It is not an anticipated failure mode, but it is allowed by ACI 440.2R-08. This 
section will show that this failure mode, which is admissible for a heavily reinforced, 
heavily strengthened section, is not practical to consider.

5.4.2.1  Flexural Strengthening of a Singly Reinforced Section
Strain compatibility:

	
ε =

−d c
c

s 0.003 	 (5.34)

	
ε =

−
− ε ≤ ε

d c

c
fe

f
bi fd0.003 	 (5.35)

350 mm350 mm

600 mm600 mm

10 mm

40 mm

FIGURE 5.10  Example 5.7 showing the alternative FRP design details.
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Force equilibrium:

	
β = +f b c A f A fc s s f fe0.85 1 	 (5.36)

	
=

−
A

f ba A f
f

f
c s s

fe

0.85
	 (5.37)

	
ρ = − ρ

f
f

a
d

f
f

f
c

fe
s

s

fe

0.85 	 (5.38)

Moment equilibrium:

	
M M A f d

a
A f d

a
u n s s f f fe f

2 2
= φ = φ − + φΨ − 	 (5.39)

	

M

f bd

f

f

d

d
d

a f

f

d

d
d

au

c f
s

s

c f
f f

fe

c f
f

2 22 2 2φ
= ρ − −Ψ ρ − 	 (5.40)

Substituting Equation (5.38) into Equation (5.40) and rearranging the terms,

	

( )− + + + β

+
β

Ψ − =

a
d

Q
a
d

Q Q
d
d

a
d

Q
d

d
d
d

f f f f

f
f

f

2 0.208 ˆ 2.77 0.208 ˆ

2.77 ˆ 0

3

1

2

2 1 1

1
1

	 (5.41)

where

	 = ρQ
f

d
d

s
c f

ˆ 87
1   when U.S. customary units are used	 (5.42a)

	 = ρQ
f

d
d

s
c f

ˆ 600
1   when S.I. units are used	 (5.42b)

	

Q
M

f bd
Q

d

d
u

c f
f

f

ˆ
2 2 1=

φ
− Ψ − 	 (5.43)

Now we need to determine at which level of FRP and steel reinforcement the 
mode of failure switches from ductile crushing to brittle crushing. For that, we need 
to derive a balanced FRP ratio at which concrete extreme-compression fiber reaches 
0.003 at the same time that εs = εy. This is called ρf

bal, and it is derived by Rasheed 
and Pervais (2003) as follows:

	

ε
=
ε + ε

=
+ εc d

c dcu
bal

cu y bal

y

0.003
0.003 	 (5.44)
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	 =
+

c
f

dbal

y

87
87

  and fy is in ksi when U.S. customary units are used	 (5.45a)

	 =
+

c
f

dbal

y

600
600

 and fy is in MPa when S.I. units are used	 (5.45b)

	

ε
=
ε + ε

ε = − ε − ε
c d

d

c
cu
bal

cu f
bal

f
f
bal f

bal cu bi1 	 (5.46)

	ε =
+

− − ε
f d

d
f
bal y f

bi0.003
87

87
1   and fy is in ksi when U.S. customary units are used		

		  (5.47a)

	 ε =
+

− − ε
f d

d
f
bal y f

bi0.003
600

600
1   and fy is in MPa when S.I. units are used		

		  (5.47b)

From force equilibrium:

	 β = + εf b c A f A Ec
bal

s y f
bal

f f
bal0.85 1

Dividing both sides by ( fybd) results in

	
ε

ρ = β
+

− ρ
E

f
f

f f
f f

bal

y
f
bal c

y y
s0.85

87
87

1   and  fy is in ksi when U.S. 		
	                                                 customary units are used	 (5.48a)

	
E

f

f

f f
f f

bal

y
f
bal c

y y
s0.85

600
600

1
ε

ρ = β
+

− ρ   and  fy is in MPa when S.I. units are used		
	 	 (5.48b)

Therefore

	
( )ρ = ρ − ρ

f

f
f
bal y

f
bal s

bal
s

	
(5.48c)

where

	
ρ =

A

bd
f
bal f

bal

	 (5.49)

	
ρ =

A
bd

s
s

	 (5.50)

	
f

f f
s
bal c

y y

0.85
87

87
1ρ = β

+
  and  fy is in ksi when U.S. customary units are used		

		  (5.51a)
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	 ρ = β
+

f
f f

s
bal c

y y

0.85
600

600
1   and  fy is in MPa when S.I. units are used	 (5.51b)

It is evident from Equation (5.48) that the more heavily reinforced the section is with 
tension steel reinforcement, the less likely it is for the ductile crushing failure mode to 
be admitted and the higher is the chance of the brittle failure mode to take place.

Example 5.8: Analysis

The beam section shown in Figure  5.11 is heavily reinforced with steel bars. 
Determine the unstrengthened and strengthened moment capacity of this section.

f f t

E f

c y f

f fu bi

4 ksi 60 ksi 0.04" Clear cover 1

Three layers of Tyfo CFRP wrapped 2" around the sides (Figure 5.11)

13,900 ksi 143 ksi 0.0008

= = = =

= = ε =

Solution:

First check the failure mode likely to occur:

12" 1.0
3
8

1
2

7
8

10.19"= = − − − × =d dt

c
f

dbal

y

87
87

87
87 60

10.19 6.03"=
+

=
+

× =

df
3 16 0.04 12 3 2 2 0.04 11

3 16 0.04 3 2 2 0.04
11.8 in=

× × × + × × × ×
× × + × × ×

=

f d
d

f
bal y f

bi0.003
87

87
1ε =

+
− − ε

d
c

f
bal f

bal bi0.003 1 0.003
11.8
6.03

1 0.0008 0.00207ε = − − ε = − − =

16 in

12 in

2 in

6 # 7 bars

FIGURE 5.11  Example 5.8 showing the section details and the FRP suggested area.
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f Ef
bal

f f
bal 13,900 0.00207 28.77 ksi= ε = × =

A ins 6 0.6 3.6 2= × =

b 2 1 2
3
8

6 0.875 5 1 13" 16" O.K.= × + × + × + × = <

A
bd

s
s 3.6

16 10.19
0.02208ρ = =

×
=

f
f f

s
bal c

y y
0.85

87
87

0.85 0.85
4

60
87

87 60
0.028511ρ = β

+
= × × ×

+
=

f
f

f
bal y

f
bal s

bal
s

60
28.77

0.02851 0.02208 0.0134( ) ( )ρ = ρ − ρ = − =

0.0134 16 10.19 2.186 in2= ρ × = × × =A bdf
bal

f
bal

Af 3 16 4 0.04 2.4 in2( )= × + × =

A Af f
bal>  brittle crushing failure

Unstrengthened beam analysis:
Assuming that steel yields:

c
A f

f b
s y

c0.85
3.6 60

0.85 4 16 0.85
4.67"

1
=

β
=

×
× × ×

=

a 0.85 4.67" 3.97"= × =

d c
c

s 0.003 0.003
10.19 4.67

4.67
0.00355 0.004 N.G.ε = ×

−
= ×

−
= <

0.65 0.00355 0.002
250
3

0.779( )φ = + − =

or

c
dt

4.67
10.19

0.458 0.429 N.G.= = >

0.65 0.25
1

0.458
5
3

0.779φ = + − =

Even though the beam is slightly not up to ACI 318-11 (2011) provisions, con-
tinue the analysis, since it is an existing beam and it is allowed to be strengthened 
by ACI 440.2R-08.

2
0.779 3.6 60 10.19

3.97
2

1380.6 k-in.= φ − = × × × − =M A f d
a

u s y
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Strengthened beam analysis:
It is known that the failure mode is brittle crushing (prior to yielding of steel), so

f b c A f A fc s s f fe0.85 1β = +

f b c A E
d c

c
A E

d c
c

c s s f f
f

bi0.85 0.003 0.0031β =
−

+
−

− ε

c c c c

c c

c a

c
d c

c
d c

s y

fe f bi fd

fd

46.24 313.2 10.19 100.08 11.8 26.69

46.24 439.97 4372.45 0

439.97 439.97 4 46.24 4372.45
2 46.24

6.07" 5.16"

0.003
0.00204 0.00207

0.003
0.00203

0.083
4000

3 13900000 0.04
0.00406

2

2

2

( ) ( )

( )

( )

= − + − −

+ − =

=
− + + × ×

×
= =

ε = − = < ε =

ε = − − ε = < ε

ε =
× ×

=

Thus, the brittle crushing failure is confirmed.

= φ = φ − + φΨ −

= × × × × − + × ×

× × × − = + =

2 2

0.65 3.6 29,000 0.00204 10.19
5.16

2
0.65 0.85 2.4

13,900 0.00203 11.8
5.16

2
1053.62 345.01 1398.63 k-in.

M M A f d
a

A f d
a

u n s s f f fe f

So for a large amount of CFRP, the section is strengthened by only 1.3%. This 
example is intended to show the ineffectiveness of this failure mode that is not 
admissible unless the section is already heavily reinforced to start with. To reinforce 
this idea even further, the following design example (Example 5.9) is presented.

Example 5.9: Design

For the section analyzed in Example 5.8, design for the required area of FRP Af 
and determine the failure mode involved using the ACI 440.2R-08 approach if

M k in

M k in

u

u

1380.60

1518.66

= −

= −

(i.e., 10% strengthening level)
Use d hf 12"= =
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Solution:
If ρf is unknown and Example 5.8 does not suggest a failure mode, assume ductile 
crushing failure.

0.0221
60
4

10.19
12

0.2185

1518.66
0.9 4 16 12

0.2185 0.85
10.19

12
0.1833

1 1 2.77 0.1833 0.298

3.58" 4.21"

0.003 4.256 10 ductile transition

4.21"
10.19"

0.413

0.65 0.25
1

0.413
5
3

0.838

1

2 2

3

= × × =

=
× × ×

+ × − =

= − − × =

= =

ε =
−

= ×

= =

φ = + − =

−

Q

Q

a
d

a c

d c
c

c
d

f

s

t

Repeat the Q ca
d sf

, , ,2 ε  calculations, since ϕ has changed. Use Excel to repeat 
the mechanical iterations.

Q2 a/df a c εs c/dt Phi

0.183329 0.298446 3.581351 4.213354 0.004256 0.413479 0.837958

0.196885 0.325739 3.90887 4.598671 0.003648 0.451293 0.787298

0.209539 0.352253 4.227037 4.972985 0.003147 0.488026 0.745601

0.221244 0.377784 4.533405 5.333417 0.002732 0.523397 0.710982

0.232006 0.402217 4.826609 5.678364 0.002384 0.557249 0.681966

0.241867 0.425519 5.10623 6.007329 0.002089 0.589532 0.657399

0.250897 0.447718 5.372618 6.320727 0.001836 0.620287 0.650

It is evident that ϕ = 0.65 and the mode of failure is brittle crushing (compression 
controlled).

ˆ 87
0.0221

87
4

10.19
12

0.4082

ˆ 1518.66
0.65 4 16 12

0.4082 0.85
10.19

12
0.2532

2 0.208 0.4082

2.77 0.2532 0.208 0.4082 0.85
10.19

12

2.77 0.4082 0.85
10.19

12
0.85

10.19
12

0

1

2 2 1 2

3 2

( )

= ρ = × × =

=
φ

− Ψ − =
× × ×

− × − =

− + ×

+ × + × × ×

+ × × × × − =

Q
f

d
d

Q
M
f bd

Q
d
d

a
d

a
d

a
d

s
c f

u

c f
f

f

f f

f
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a
d

a
d

a
df f f

2.085 0.7626 0.00068 0
3 2

− + + =

Solving for the lowest positive root using Excel Goal-Seek function,

a
d

a c
f

0.47425 5.69" 6.70"= = =

s y

fe fd

fd

0.003
10.19 6.7

6.7
0.00156 0.00207

0.003
12 6.7

6.7
0.0008 0.00157

0.083
4,000

3 13,900,000 0.04
0.00406

ε =
−

= < ε =

ε =
−

− = < ε

ε =
× ×

=

Thus, brittle crushing failure is confirmed.

f

f
f

a
d

f
f

fe

f
c

fe
s

s

fe

f
bal

13,900 0.00157 21.823 ksi

0.85 0.85
4

21.823
5.69

10.19
0.0221

29,000 0.00156
21.823

0.0412 0.0134 (Example 5.8)

= × =

ρ = − ρ = × × − ×
×

= > ρ =

= ρ = × × =

= =
×

= >> + × =

A bd

b
A
nt

h

f f

f
f

f

0.0412 16 10.19 6.714 in.

6.714
3 0.04

55.95" 16 2
12
2

28" assuming NA @
2

2

This is an impractical strengthening case. The section that is heavily reinforced 
cannot be strengthened by 10%.

5.4.3 R upture of FRP

This is one of the ductile flexural failure modes of FRP-strengthened beams, since 
the internal steel reinforcement is guaranteed to yield way prior to the rupture of 
FRP. It is a feature of lightly reinforced and lightly strengthened sections, which 
typically happens in slabs and T-beams. Despite the ductile nature of this failure 
mode, FRP rupture is sudden and catastrophic, since it is typically accompanied by 
a significant release of elastic energy. Accordingly, ACI 440.2R-08 tries to lessen 
the effect of this failure mode by limiting the ultimate FRP strain allowed to 90% of 
the εfu. This is in addition to the environmental factor CE that multiplies the design 
ultimate strain. The latter is known to be the mean tensile strain value minus three 
times the standard deviation to guarantee a 99.87% probability of exceedance, as 
shown in Chapter 3.
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5.4.3.1  Maximum FRP Reinforcement Ratio for Rupture Failure Mode
To ensure that this mode controls the design, the FRP ratio should be kept below 
the balanced ratio that would cause simultaneous ductile concrete crushing and the 
FRP rupture limit (0.9 εfu). This ratio is determined using expressions developed by 
Rasheed and Pervaiz (2003) for singly and doubly reinforced rectangular sections:

	
ρ = = − ρ

A

bd

f

f

a

d

f

f
f
b f

b
c

fu

b
s

y

fu

0.85
0.9 0.9

max
max max

	 (5.52)

where

	

= β = β
ε

ε + ε
a c

d
b b

cu f

cu fu

max
1

max
1 max 	 (5.53)

	 ε = ε + εfu fu bi0.9max 	 (5.54)

	
ρ =

A

bd
s

s 	 (5.55)

	

f

f
f
b

f
b

s
s

b

fu



0.9
,max ,max

,max

ρ = ρ + ρ 	 (5.56)

	

f f
d

d

f

d

d

d

d

f

s
b

y
f

y

fu

f
fu

f

y

fu

if
87

87 29,000

87 87 29,000 if
87

87 29,000

,max
max

max
max( )

= ≤
−

+ ε

= − + ε >
−

+ ε
	 (5.57)

Note that Equation (5.57) is used with U.S. customary units ( fy in ksi) and that every 
(87) in the equation is replaced with (600) for the case of S.I. units ( fy in MPa). Also, 
every (29,000) is replaced with (200,000) in the case of S.I. units.

5.4.3.2  Exact Solution for Singly Reinforced Rectangular Sections
Force equilibrium:

	 ∑ ( )= α − − =F f bc A f A fx c s y f fu0 0.9 0 	 (5.58)

	
ρ = = α − ρ

A

bd

f

f

c

d

f

f
f

f c

fu
s

y

fu0.9 0.9
	 (5.59)

Moment equilibrium:

	 M M A f d c A f d cu n s y f f fu f0.9( )( )( )= φ = φ −β + φΨ −β 	 (5.60)

	

M

f bd

f

f

d

d

c

d

f

f

d

d

c

d
u

c f
s

y

c f
f f

fu

c f f

1
0.9

12

2

2

( )
φ

= ρ −
β

+Ψ ρ −
β

	 (5.61)
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Substituting Equation (5.59) into Equation (5.61),

	

M

f bd
Q

d

d

c

d

f

f

c

d

f

f

f

f

d

d

c

d
u

c f f
f

c

fu
s

y

fu

fu

c f f

1
0.9 0.9

0.9
12 1

( )
φ

= −
β

+ Ψ α −ρ −
β

	

M

f bd
Q

d

d

c

d

c

d

c

d
Q

c

d
u

c f f
f

f f
f

f

1 1 12 1 1
φ

= −
β

+ Ψ
α

−
β

−Ψ −
β

	 (5.62)

where

	
= ρQ

f

f

d

d
s

y

c f
1 	 (5.63)

Recalling the α expression from Equations (2.20) and substituting the strain com-
patibility expression for εcf,

	

α =
ε

ε
−

ε

ε
=

ε

− ε
−

ε

− ε

c

d c

c

d c
cf

c

cf

c

fu

f c

fu

f c

1
3 ( )

1
3 ( )

2 max max 2

	 (5.64)

Introducing the β expression for the centroid location of the Hognestad’s parab-
ola, with respect to the top extreme fiber, and substituting the strain compatibility 
expression for εcf,

	

β =
−
ε

ε

−
ε

ε

=

−
ε

− ε

−
ε

− ε

c

d c

c

d c

cf

c

cf

c

fu

f c

fu

f c

1
3 12

1
3

1
3 12( )

1
3( )

max

max 	 (5.65)

Substituting Equations (5.64) and (5.65) into Equation (5.62) and rearranging 
the terms,

	

+ + + + + ε =A
c

d
B

c

d
D

c

d
E

c

d
F

c

d
Q

f f f f f
c9 0

2 3 4 5

2
3 	 (5.66)

where

	
( )

( )

( )

= − ε − ε ε + ε − Ψ

= − Ψ − ε − ε ε

A Q Q Q

Q Q Q

c c fu c f

f c c fu

27 3 3 1

3 1 9 3

2
3

2
2 max

1
3

1 2
3

2
2 max 	 (5.67)
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( )

= ε + ε ε − ε − Ψ − + Ψ ε ε + Ψ ε ε

= − − Ψ ε + − − Ψ − Ψ ε ε

B Q Q Q
Q

Q

Q Q Q
Q

c c fu c f f c fu f c fu

f c f f c fu

27 6 9 (1 ) 3
4

3
3
4

9(3 (1 )) 3 2
4

1 3

2
3

2
2 max

1
3 1 2 max

1
2 max

2 1
3

2
1 2 max

		
		  (5.68)

	

( )

( )

= − ε − ε ε + ε − Ψ + + Ψ ε ε + Ψ ε ε

+ Ψ ε ε − Ψ ε ε

= − Ψ − ε + − Ψ + Ψ − ε ε + Ψ ε ε

D Q Q Q
Q

Q

Q Q
Q

Q

c c fu c f f c fu f c fu

f c fu f c fu

f c f f c fu f c fu

9 3 9 1 6
4

3 6

3
6
4

D 9 (1 ) 3
2

(1 ) 6 6

2
3

2
2 max

1
3 1 2 max max2

2 max
1

2 max

1 2
3 1

2
2 max max2

		
		  (5.69)

( )

( ) ( )

= − − Ψ ε − + Ψ ε ε − Ψ ε ε − Ψ ε − Ψ ε ε

− Ψ ε ε + Ψ ε ε

= − − Ψ ε − − Ψ + Ψ ε ε − Ψ ε ε − Ψ ε

E Q
Q

Q

E Q
Q

f c f c fu f c fu f fu f c fu

f c fu f c fu

f c f f c fu f c fu f fu

3 1 3
4

3 6 6

7
4

3
4

3 1 3
4

1 5
31
4

1
3 1 2 max max2 max3 2 max

max2
1

2 max

1
3 1 2 max max2 max3

	
		  (5.70)

	
= Ψ ε ε + Ψ ε ε + Ψ εF f c fu f c fu f fu3

7
4

1
4

2 max max2 max3 	 (5.71)

This equation is not practical to solve in design. There are two alternatives to 
use in design. The first one is an approximate solution for c

d f
, and the second one 

is an almost exact statistically correlated linear equation (Rasheed and Motto 2010; 
Saqan, Rasheed, and Hawileh 2013).

5.4.3.3  Approximate Solution for Singly Reinforced Rectangular Sections
If ε′c is approximated using the typical value of 0.002, which is accurate for nor-
mal strength concrete, the fifth-degree polynomial is reduced to a cubic polynomial 
(Rasheed and Motto 2010).

The α and β expressions will be extremely simplified by the substitution of 
ε′c = 0.002:

	 α = ε − εcf cf500 83333 2 	 (5.72)

	
β =

− ε
− ε

cf

cf

0.33 41.67
1 166.67

	 (5.73)
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Plotting α and β functions in terms of εcf , one notices that α may be approximated 
by two straight lines with a breaking point at around εcf = 0.0015 with an R2 = 0.9931 
and 0.9305, respectively, as seen in Figure 5.12.

	

cf cf

cf cf

366.67 0.0417 0 0.0015

125 0.4042 0.0015 0.003

α = ε + ≤ ε <

α = ε + ≤ ε ≤ 	 (5.74)

In addition, β is seen to have a slight variation along the entire range of εcf , as 
seen in Figure 5.13:

	 β = ε + =Rcf27.768 0.3239 ( 0.9677)2 	 (5.75)

0
0.1
0.2

0.3
0.4
0.5
0.6

0.7
0.8

0.9

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035
εcf

α

FIGURE 5.12  Linear regression plot of α vs. εcf relationship. (First published by Engineers 
Australia. Reprinted with permission.)

β = 27.768 εcf  + 0.3239

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035
εcf

β

FIGURE 5.13  Linear regression plot of β vs. εcf relationship. (First published by Engineers 
Australia. Reprinted with permission.)
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Accordingly, Equation (5.75) may be further simplified by considering two constant 
values of β for each range of εcf specified for α. The constants are selected to be the 
average of the two end values of each strain range (Rasheed and Motto 2010):

	

β =
β +β

= ≤ ε <

β =
β +β

= ≤ ε <

cf

cf

2
0.3447 0 0.0015

2
0.3864 0.0015 0.003

0 0.0015

0.0015 0.003 	 (5.76)

Substituting into the moment equilibrium Equation (5.62) for the first range of εcf 
values 0 ≤ εcf < 0.0015, this leads to the following cubic equation:

	

+ + + =A
c

d
B

c
d

D
c

d
Q

f f f

03 3

2

3

3

2 	 (5.77)

where if εcf < 0.0015,

	
A Q Qf f0.3447 (1 ) 0.04173 1 2= −Ψ − − Ψ 	 (5.78)

	 B Qf f f fu0.0561 0.3447 (1 ) 366.673 1
max= Ψ − −Ψ − Ψ ε 	 (5.79)

	 D f fu f126.3911 0.01443
max= Ψ ε − Ψ 	 (5.80)

Similarly, if 0.0015 ≤ εcf ≤ 0.003, Equation (5.77) holds with:

	 A Q Qf f0.3864 (1 ) 0.40423 1 2= −Ψ − − Ψ 	 (5.81)

	 B Qf f f fu0.5604 0.3864 (1 ) 1253 1
max= Ψ − −Ψ − Ψ ε 	 (5.82)

	 D f fu f48.3 0.15623
max= Ψ ε − Ψ 	 (5.83)

Once c
d f  is determined, ρf can be calculated from the force equilibrium:

	

f

f

c

d

f

f
f

c

fu
s

y

fu0.9 0.9
ρ = α − ρ 	 (5.84)

5.4.3.4  Linear Regression Solution for Rupture Failure Mode
Alternatively, Rasheed and Motto (2010) derived a statistically accurate linear rela-
tionship between the strengthening ratio and the reinforcement force ratio based on 
a parametric study of singly and doubly-reinforced strengthened rectangular sec-
tions, as seen in Figure 5.14. This parametric study had 516 data points yielding an 
R2 = 0.9994 which represents perfect linearity. However, Ψf was not considered in 
that equation. This linear equation may be equally used in analysis and design. The 



111Flexural Strengthening of Beams and Slabs

reinforcement force ratio is λ =
ρ ×

ρ
f

f
f fu

s y

0.9
, while the strengthening ratio is M

M
M
M

n
n

u
u

=  

if 0.9φ = :

	

M

M
n

n

0.9626 0.976λ = − 	 (5.85)

In a follow-up study, Saqan, Rasheed, and Hawileh (2013) derived a similar statis-
tically accurate linear relationship while considering Ψf = 0.85, as per ACI 440.2R-08. 
However, their definition of the ρ =f

A
bd

f

f
 differs from the definition of the same vari-

able ρ =f
A
bd

f  in this textbook. Accordingly, the same relationship, developed by 
Saqan, Rasheed, and Hawileh (2013), is rederived here using the latter definition 
of the FRP reinforcement ratio. This linear relationship correlates 177 data points 
of beam section designs performed in accordance to ACI 440.2R-08 and yield-
ing an R2 = 0.9973, as seen in Figure 5.15. The x-axis has the FRP effective force 

( ) ×ρ
ρ

f
f

d
d

f f

s y

f , while the y-axis has the strengthening ratio M
M

n
n

:

	

=
ρ
ρ

× +
M
M

f

f

d

d
n

n

f f

s y

f0.7815 1	 (5.86)

To prove the accuracy of this linear relationship, the formulation developed by 
Saqan, Rasheed, and Hawileh (2013) will be followed here.
Moment equilibrium:

	
= −

β
+ ψ −

β
M A f d

c
A f d

c
n s y f f f f

2 2
1 1 	 (5.87)

ρs= 0.0045, 0.00875, 0.013

B/H= 0.5, 0.75, 1.0 

fy = 350, 450, 550 MPa

CFRP
ECFRP = 400 GPa
fCFRP = 3000 MPa

Mn/Mn = 1.1, 1.2, 1.3, …

ρ ś = 0., 0.002, 0.01fć = 30, 40, 50 MPa

GFRP
EGFRP = 45 GPa
fGFRP = 400 MPa Determine

Cn and ρf

FIGURE 5.14  Variation of design variables in the parametric study of Rasheed and Motto 
(2010). (First published by Engineers Australia. Reprinted with permission.)
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M A f d

c
n s y

un( )
2

1= −
β

	 (5.88)

Dividing Mn  from Equation (5.87) by Mn from Equation (5.88),

	

=
−
β

+ ψ −
β

−
β

M
M

A f d
c

A f d
c

A f d
c

n

n

s y f f f f

s y
un

2 2
( )

2

1 1

1
	 (5.89)

Substituting the steel ratio ρs = As/bd and the FRP ratio ρf = Af /bd in Equation 
(5.89) and rearranging, the following expression is derived:

	

=
−
β

−
β

+ ψ
ρ
ρ

−
β

−
β

M
M

c
d
c
d

f

f

d

d

c
d

c
d

n

n un
f

f f

s y

f f

un

1
2

1
( )

2

1
2

1
( )

2

1

1

1

1
	 (5.90)

In the limit when Mn  approaches Mn, the first term of Equation (5.90) approaches 1. 

The quotient in the second term c
d

c
df

un1 12
( )

2
1 1( ) ( )− −β β  is found to have very little 

variation. Accordingly, Equation (5.90) closely represents a linear relationship. This 
relationship may be directly used in design irrespective of the failure mode admitted. 
Accordingly, it will be used to determine the FRP reinforcement ratio ρf directly by 
substituting =f ff fu0.9  in Equation (5.86).

1.00

1.20
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1.80

2.00

2.20

0 0.2 0.4 0.6 0.8 1 1.2 1.4

St
re

ng
th

en
in

g 
Ra

tio

(ρf ff/ρs fy) × (df/d)

y = 0.7815x + 1
R² = 0.9973

FRP e�ective force
Linear (FRP e�ective force)

FIGURE 5.15  Linear correlation of design data derived after the work of Saqan, Rasheed, 
and Hawileh (2013).
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Example 5.10: Analysis

A singly reinforced section was constructed and tested by Triantafillou and 
Plevris (1992). CFRP was used having Ef = 26,980 ksi and f *fu = 210 ksi. The 
beam designation was Beam 3 with the following section properties, as seen in 
Figure 5.16:

f b

f t

A

c f

y f

s bi

6.48 ksi 2.38"

75 ksi 0.0079"

0.051 in 02

= =

= =

= ε =

Determine the design moment capacity of the section and compare it to the 
experimental moment to have a feel for the strength reduction factors warranted 
by ACI 440.

Solution:

Determine the failure mode first.

1.05 0.05
6480
1000

0.7261β = − =

Cfu E fu bi0.9 0.9 0.95
210

26980
0 0.00665max *ε = ε + ε = × × + =

a
d

b
cu f

cu fu
0.726

0.003 5
0.003 0.00665

1.13"max
1 max= β
ε ×
ε + ε

= ×
×

+
=

f C ffu E fu0.9 0.9 0.9 0.95 210 179.55 ksi*= = × × =

f
f

a
d

f
ff

b c

fu

b
s

y

fu
0.85

0.9 0.9
max

max

ρ = − ρ

f
bmax

f f
b

0.85
6.48

179.55
1.13
4.37

0.051
3 4.37

75
179.55

0.00631

2.38 0.0079
3 4.37

0.00143 0.00631max

ρ = × × −
×

× =

ρ =
×
×

= < ρ =

3 in.

2.38 in.

5 in. 4.37 in.

FIGURE 5.16  Example 5.10 showing the section and FRP design details.
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The failure mode seems to be FRP rupture:

f bc A f A fc s y f fu(0.9 )α = +

c
d c

c
c

f
E

cf
fu

f

c
c

c

0.00665
5

1.71 3 10 6480 0.00241

max

5

ε =
ε
−

=
−

ε = = × =−

c
c

c
c

cf

c

cf

c

1
3

2.76
5

1
3

2.76
5

2 2

α =
ε
ε

−
ε
ε

=
−

−
−

c
c

c

c

c

c
c

c

c
c c

2.76
5

2.54
5

6.48 3 0.051 75 2.38 0.0079 179.55 7.2

2.76
5

2.54
5

19.44 7.2 multiply by (5 )

2

2

2

2
2

( )

( ) ( )

α =
−

−
−

α × × = × + × × =

−
−

−
× = −

( ) ( )− − = −

− + − + =

− − + =

=

ε =
−

= <

ε =
−

−
= > φ =

c c c c

c c c c

c c c

c

cf

s

53.65 5 49.38 7.2 5

103.03 268.25 180 72 7.2 0

103.03 261.05 72 180 0

0.828" (Goal-Seek inExcel)

0.00665
0.828

5 0.828
0.00132 0.003

0.00665
4.37 0.828

5 0.828
0.00565 0.005 0.9

2 3 2

3 2 2

3 2

fd

fu fd

0.083
6480

1 26980000 0.0079
0.0145

0.00665

Thus, FRP rupture is confirmed

max

ε =
× ×

=

ε = < ε

2 2
1 max 1= φ −
β

+ φΨ −
β

M A f d
c

A f d
c

u s y f f fu f

= × ε = × = ≈f E ffu f fu fu26980 0.00665 179.42 0.9max max

0.9 0.051 75 4.37
0.726 0.828

2

0.9 0.85 2.38 0.0079 179.42 5
0.726 0.828

2

14.01 12.13 26.14 k-in 2.178 k-ft

from the paper, 34.94 k-in 2.912 k-ft

= × × × −
×

+ × × × × × −
×

= + = =

= =

M

M

u

n
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Thus, the average actual strength reduction factor is
M

M
26.14
34.94

0.748 0.9.u

nexp
= = <

What are the sources of strength reduction?
These are

		

f
C

f f

f

fu

E

fu fu

1
2
3 0.9
4

5 3*

− φ

− Ψ

−

−

− = − σ

Pn = 3.88 k

48 in.

P/2 P/2

18 in.18 in. 12 in.

Pn
2

Mn × a = 34.94 k - in

Now, let’s calculate Mu without strengthening:

0.85
0.051 75

0.85 6.48 3
0.231"

2
0.9 0.051 75 4.37

0.231
2

14.65 k-in 1.22 k-ft

= =
×

× ×
=

= φ − = × × − = =

a
A f

f b

M A f d
a

s y

c

u s y

Thus, the moment strengthening ratio is

M
M

u

u

26.14
14.65

1.78= =

Example 5.11: Design

A doubly reinforced section was built and tested by Arduini, Tommaso, and 
Nanni (1997), illustrated in Figure  5.17. The beam was designated as Beam 
B2, which failed by rupture of FRP. In this example, we shall design for FRP 
to achieve Mn  from experiment. Then we will compare the actual FRP area to 
what we obtain.

M P E

M P f

A A
f f

b t

n n f

nexp n fu
*

s s

y c

f f

93.5 kN-m ( 170 kN) 400 GPa

51.66 kN-m ( 93.93 kN) 3000 MPa

398 mm 265 mm
340 MPa 30 MPa

actual 300 mm 0.17 mm
Assume 1 FRP layer only.

exp

2 2

= = =

= = =

= =
= =

= =
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Solution:

The failure mode is unknown a priori. Assume ductile concrete crushing (tension 
controlled). Ignore the compression steel for now:

d d

d

t 350 mm

50 mm

= =

=

400.09 mm
2

4
13 3

300 350
0.00379

0.00379
340
30

350
400.09

0.0376

93.5 10 10
30 300 400.09

0.0376 0.85
350

400.09
0.06397

2

1

2 2 1

3 3

2

= = +

ρ =

π
× ×

×
=

= ρ = × × =

=
φ

+ Ψ − =
× ×

× ×

+ − =

d h
t

Q
f
f

d
d

Q
M
f bd

Q
d
d

f
f

s

s
y

c f

u

c f
f

f

a
d

a
d

a
d

a
d

a
d

a

c
a

f f

f f

f

f fe fu

2 0.208 0.0376 2.77 0.06397 0

1.992 0.1772 0

1.992 1.992 4 0.1772
2

0.0933

37.34 mm 0.85

43.93 mm

0.003 400.09 43.93
43.93

0.0243
3000

400000
0.0075

2

2

2

1

1

( )

( )

− − × + × =

− + =

=
− − ×

=

= β =

=
β

=

ε = ε =
× −

= > ε = =

300 mm

50 mm

400 mm 300 mm

50 mm

2 φ 13 

3 φ 13 

FIGURE 5.17  Example 5.11 showing the beam section tested by Arduini, Tommaso, and 
Nanni (1997).
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Thus, the failure mode is expected to be rupture of FRP.
Assuming interior exposure for CFRP,

f C ffu E fu0.9 0.9 0.9 0.95 3000 2565 MPa*= = × × =

Finding εbi based on the self-weight of the beam only (experimentally tested beam),

23.5 kN/m
300 400

10
2.82 kN/m

M
8

2.82 2.5
8

2.203 kN-m M

0.62 30 1.7 10
400 201.1

29024614 N-mm 29 kN-m

300 400 200 1 265.5 50 1 398.2 350
300 400 1 265.5 1 398.2

201.1mm

200000
4700 30

7.77

3
6

DL

2 2

cr

9

( )

( ) ( )
( ) ( )

= ×
×

=

=
×

=
×

= <

= =
× ×
−

= =

=
× × + − × × + − × ×

× + − × + − ×
=

= =

w

w L

M
f I
y

y
n n

n n

n

DL

DL n

cr
r gt

bot

top

300 400
12

300 400 200 201.1 1 265.5 201.1 50

1 398.2 201.1 350 1.7 10 mm

2.203 10 400 201.1
4700 30 1.7 10

0.00001 negligible

3
2 2

2 9 4

6

9

( )

( ) ( ) ( )

( ) ( )

( )

=
×

+ × × − + − × × −

+ − × × − = ×

ε =
× −

=
× × −

× ×
= →

I n

n

M h y

E I

gt

bi
DL top

c gt

Assuming the beam loaded with dead load only during strengthening,

C

f
E

fu E fu bi

c
c

c

0.9 0.9 0.95
3000

400000
0.00001 0.00642

1.71 1.71
30

4700 30
0.00199 0.002

max *ε = ε + ε = × × + =

ε = = × = ≈

First, use the exact fifth-degree polynomial ignoring compression steel:

0.03761 = ρ =Q
f
f

d
d

s
y

c f

0.063972 2 1=
φ

+ Ψ − =Q
M
f bd

Q
d
d

u

c f
f

f

3( (1 ) 9 ) 3

3 0.0376 0.15 9 0.06397 0.002 3 0.06397 0.002 0.00642

1.861 10

1 2
3

2
2 max

3 2

8

( )

= − Ψ − ε − ε ε

= × − × × − × × ×

= − × −

A Q Q Qf c c fu
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( )( ) ( )

( )

= − − Ψ ε + − − Ψ − Ψ ε ε

= × − × ×

+ × − × − × × × = − × −

B Q Q Q
Q

f c f f c fu9 3 1 3 2
4

1 3

9 3 0.06397 0.0376 0.15 0.002

3 2 0.06397
0.0376

4
0.15 3 0.85 0.002 0.00642 1.733 10

2 1
3

2
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3

2 7
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= − Ψ − ε + −
Ψ

+ Ψ − ε ε + Ψ ε ε
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Q Q
Q
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f
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2

1
2

6 6
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3
0.0376

2
0.575 6 0.85 0.06397 0.002 0.00642

6 0.85 0.002 0.00642

8.05 10

1 2
3 1

2
2 max max 2

3

2

2

7

( ) ( )= − − Ψ ε − − Ψ + Ψ ε ε − Ψ ε ε − Ψ ε

= − × × × − × + × × ×
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E Q
Q

f c f f c fu f c fu f fu3 1 3
4

1 5
31
4
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4
0.15 5 0.85 0.002 0.00642

31
4

0.85 0.002 0.00642 0.85 0.00642 1.0956 10

1
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3 2

2 3 6

3
7
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1
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7
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1
4
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The fifth-degree polynomial equation becomes
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Multiplying the previous equation by 1 × 109,

c
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c
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c
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c
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f f f f f

f
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f
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2 3 4 5

max

− − + − + =

= = ε =
−

ε =
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Applying the approximate solution equation,

For 0.0015

0.3447 0.0376 0.15 0.06397 0.0417 0.85 0.09753A

cfε <

= × × − − × = −

0.0561 0.85 0.3447 0.0376 0.15 366.67 0.85 0.00642 1.9552

126.3911 0.85 0.00642 0.0144 0.85 0.67748

3

3

B

D
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2 3
c
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c
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c
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c

f f f
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=

=

0.9 0.9
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3
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ε
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0.003792
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5.477 10 (exact 4.557 10 )4 –4
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(exact 0.16 mm) for singly reinforced section (with doubly 0.17 is expected)

2 2A bd

t
A
b

t

t

f f

f
f

f
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f

= ρ = =

= = = > =

= >

The third approach is by using the statistically correlated linear equation:
Unstrengthened beam:

0.85
0.003

6502.5 265.5 600 265.5 600 50 398.2 340 0

6502.2 23912 7965000 0
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2 2
1 1M A f d
c

A f
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dn s y s s= −
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+
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398.2 340 350
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2
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+ × − ×
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93.5
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1.9332

0.7815 1 1.9332
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5.25 10
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ρ
ρ
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ρ ×

ρ
= ρ =

× × ×
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M
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M
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M
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f
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A bd

t
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t
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u

u
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f f

s y

f

f fu

s y

f
f

f f

f
f

f
factual

Note: The tf is slightly greater than 0.17 mm, since the equation is correlated with 
Ψf.

Check the debonding strain:

0.41
0

1 400000 0.184
0.008278 0.00642maxε =

3
× ×

= > ε =fd fu

Thus, the failure mode of rupture of FRP is confirmed.

Example 5.12: Design of One-Way Solid Slab

Design the slab given in Figure  5.18 based on ACI 318-83 code, and then 
strengthen it based on ACI 440.2R-08, assuming no change in dead load. 

5.5 m 5.5 m

FIGURE 5.18  Example 5.12 showing the top view of the solid slab.
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The slab is a two-span, continuous, solid, one-way slab with the following 
parameters:

wLL = 4.8 kN/m2

wLLupgrade = 7.0 kN/m2

fy = 400 MPa
f′c = 25 MPa

Solution:

Let 0.196 mmin 28
5.5
28h Ln= = =

Use h = 0.2 m = 200 mm
DL self wt: 0.2 × 23.6 = 4.72 kN/m/m
DL tiling: 0.05 × 17 = 0.85 kN/m/m
DL total: WDL = 5.57 kN/m2

LL total: WLL = 4.8 kN/m2

wL2
n

9
– –

wL2
n

14
wL2

n
24

As per ACI 318-83:

1.4 1.7

1.4 5.57 1.7 4.8 15.96 kN/m2

= +

= × + × =

w w wu DL LL

d = 200 − 25 = 175 mm

M_@interior_support
9

53.64 kN-m/m
2

= =
w Lu n

R
53.64 10 /
0.9 25 1000 175

0.07782

6

2=
φ

=
× −

× × ×
=

M
f bd

N mm mu

c

1 1 2.36
1.18

0.0818
R

ω =
− −

=

f
f

s
c

y
0.0818

25
400

0.00511ρ = ω = × =

0.00511 1000 175 895 mm /m1
2A bds s= ρ = × × =

Try No. 13 bars (Area = 133 mm2).
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No. of bars/m
895
133

6.73

Spacing
1000
6.73

148.6 mm 150 mm use No. 13 bars @ 150 mm

= =

= = ≈

M @midspan
w
14

34.49 kN-m/m
2

= =+
Lu n

R
34.49 10 /
0.9 25 1000 175

0.050
6

2

N mm m
=

× −
× × ×

=

0.0516

0.00323

565 mm /m2A

s

s

ω =

ρ =

= 2

Try No. 10 bars (Area = 100 mm2).

No. of bars/m
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177 mm use No. 10 bars @ 150 mm

= =

= =

M_exterior_support
w
24

20.12 kN-m/m
2Lu n= =

R 0.0292
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=

ω =

0.00186ρ =s

A

f
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f
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A A
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c

y y

c

s

s

s s s s
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Check 0.75 0.85
600
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0.85 since 30 MPa

0.0203 all

0.0018 1000 200 360 mm /m

A use A 360 mm /m

3

max 1

1
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min min
2

3 min 3 min
2

=

ρ = × β
+

β = <

ρ = > ρ

= ρ = × × =

< = =

2

Try No. 10 bars (Area = 100 mm2).

No. of bars/m 3.6

Spacing
1000
3.6

278 mm use No. 10 bars @ 250 mm

=

= =

min(3 , 450 mm)

450 mm

max

max

≤

=

s h

s
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In the transverse direction, use temperature and shrinkage reinforcement:

As 360 mm /m

Use No. 10 bars @ 250 mm (400 mm /m).

min
2

2

=

w L

V w d

f b d

u
u n

ud u u

ud

c c w
ud

Check shear capacity.

V 1.15
2

50.47 kN

V 50.47 15.96 0.175 47.68 kN

V 47.68
0.85

56.1kN

V 0.17 0.17 25 1000 175 148,750 N 148.75 kN
V

O.K.

= =

= − = − × =

φ
= =

= = × × = = >>
φ

Strengthening design:

1.2 1.6 1.2 5.57 1.6 7.0 17.884 kN/m2= + = × + × =w w wu DL LL

There is an advantage of load factors.
Strengthening limits:

= × + × = × + ×

= <

= = <

w w w

w

SL DL LL

LL

1.1 0.75 1.1 5.57 0.75 7.0

11.38 kN/m 15.96 kN/m O.K.

since 7 kN/m 146 psf 150 psf

new

2 2

new
2

Positive moment section:

No. 10 @ 150 mm
No. of bars/m = 6.671000

150 =  bars/m
Area of reinforcement/m = 100 mm2 × 6.67 = 667 mm2/m

667
1000 175

0.00381

0.00381
400
25

0.06095

0.59 0.05876

0.05876 25 1000 175 44988444.5 N-mm/m

M 44.99 kN-m/m

14
17.884 5.5

14
38.64 kN-m/m

0.9 44.99 40.5 kN-m/m 38.64 kN-m/m

2
2

2

2 2

ρ = =
×

=

ω = ρ = × =

= ω − ω = =

= × × × =

=

= =
×

=

φ = × = > =

+A
bd

f
f

R
M

f bd

M

M
w L

M M

s
s

s
y

c

n

c

n

n

u
u n

n u
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No need to strengthen the positive moment region.
Negative moment section at interior support:

No. 13 @ 150 mm
No. of bars/m = 6.671000

150 =  bars/m
Area of reinforcement/m = 133 mm2 × 6.67 = 887 mm2/m

887
1000 175

0.00507-A
bd

s
sρ = =

×
=

0.00507
400
25

0.0811
f
f

s
y

c
ω = ρ = × =

0.59 0.077232
2R

M
f bd

n

c
= ω − ω = =

0.07723 25 1000 175 59,126,123.4 N-mm/m 59.13 kN-m/m2Mn = × × × = =

9
17.884 5.5

9
60.11kN-m/m

2 2

M
w L

u
u n= =

×
=

0.9 59.13 53.22 kN-m/m 60.11kN-m/mφ = × = < =M Mn u

Thus, strengthening is needed at the interior negative region:

f Efu f fu

Use Aslan 500 NSM CFRP Tape.

Dimensions: 16 mm x 2 mm

2068 MPa 124 GPa 0.0167= = ε =

Assume only DL at the time of strengthening:

9
5.57 5.5

9
18.72 kN-m/m

2 2

= =
×

=

=

M
w L

M
f I
y

DL
DL n

cr
r gt

top

Assuming a singly reinforced section:

y

M M

k n n n

top

gt

cr DL

1000 200 100 8.51 1 887 25
1000 200 8.51 1 887

97.6 mm

I
1000 200

12
1000 200 100 97.6 8.51 1 887 25 97.6

702929149.2 mm

7.02 10 mm

0.62 25 7.02 10
97.6

22326643.1N-mm/m 22.33 kN-m/m

Still the section is cracked under service load in its prior history.

2 0.254

3
2 2

4

8 4

8

2

( )
( )

( ) ( ) ( )

=
× × + − × ×

× + − ×
=

=
×

+ × × − + − × × −

=

= ×

=
× ×

= = >

= ρ + ρ − ρ =
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I
b kd

nA d kdcr s
( )
3

1000 44.41
3

8.51 887 175 44.41

157923864.6 1.579 10 mm

3
2 2

8 4

( ) ( )= + − =
×

+ × × −

= = ×

C

bi

fd E fu bi

18.72 10 200 44.41
4700 25 4.1 10

0.000785

0.7 0.7 0.95 0.0167 0.000785 0.01189

6

8

( )
ε =

× −

× ×
=

ε = ε + ε = × × + =

Applying the linear regression equation:

M
M

M
M

M
M

f
f

d
d

f
f

d
d

A bd

u

u

n

n

n

n

f f

s y

f

f fu

s y

f
f

f f

60.11
53.22

1.1295

0.7815 1 1.1295

0.7 0.1295 0.00507 400 175
0.7815 0.7 0.95 2068 200

0.000214

37.41mm /m

Each NSM tape has the area of 32 mm .

2

2

= = =

=
ρ
ρ

+ =

λ =
ρ ×

ρ
ρ =

× × ×
× × × ×

=

= ρ =

No. of NSM tapes/m = 
37.41

32
1.17 tapes=

Spacing = 
1000
1.17

855 mm=

Use one NSM tape @ 850 mm.

No. of tapes per meter = 
1000
850

1.176 tapes=

32 mm 1.176 37.63 mm /m2 2Af = × =

Using force equilibrium to find the neutral axis depth (c):

0.7

3 3

Into force equilibrium:

3
0.7

2

2

2 2

2 2

2 2

2 2

( ) ( )

( ) ( )

α = + ×

α =
ε
ε

−
ε
ε

=
ε ×
− × ε

−
ε ×

− ε

ε ×
− × ε

−
ε ×

− ε
= + ×

f bc A f A f

c
d c

c

d c

c
d c

c

d c
f bc A f A f

c s y f fu

cf

c

cf

c

fd

f c

fd

f c

fd

f c

fd

f c
c s y f fu

Multiply this force equilibrium equation by 
2 2d cf c( )− ε

3
0.7

1.71
25

4700 25
0.00182

2
2

3 2 2d c f bc f bc A f A f d cfd c f c
fd

c s y f fu f c

c

( )( ) ( )ε ε − −
ε

= + × − ε

ε = × =
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0.01189 0.00182 200 25 1000
0.01189

3
25 1000

887 400 37.63 0.7 0.95 2068 200 0.00182

108.2 0.541 1.178 1.347 40000 400 0

1.7191 106.853 538.8 53880 0

25.18 mm

0.01189 25.18
200 25.18

0.001713 0.003

So, debonding or limiting strain of NSM tape controls.

2
2

3

2 2

2 3 3 2

3 2

( )

( )

( ) ( )

( )

× × − × × × − × ×

= × + × × × × − ×

− − − − + =

− + + − =

=

ε =
ε ×
−

=
×

−
= <

c c c

c

c c c c c

c c c

c

c
d c

cf
fd

f

Another way to perform the design:
The approximate solution for εcf > 0.0015 is

0

0.00507
400
25

175
200

0.07098

60.11 10
0.9 25 1000 200

0.07098 0.85
175
200

0.065

0.3864 0.07098 1 0.85 0.065 0.4042 0.85 0.4045

3 3

2

3

3

2

1

2 2 1

6

2

3 ( )

+ + + =

= ρ = × × =

=
φ

+ Ψ − =
×

× × ×

+ × − =

= × × − − − × = −

A
c
d

B
c
d

D
c
d

Q

Q
f
f

d
d

Q
M
f bd

Q
d
d

A

f f f

s
y

c f

u

c f
f

f

( )= × − × × − − × × = −

= × × − =

B

D

0.5604 0.85 0.3864 0.07098 1 0.85 125 0.85 0.01189 0.7911

48.3 0.85 0.01189 0.1562 0.3319

3

3

c
d

c
d

c
d

c
d

c

d c
c

f
f

c
d

f
f

f f f

f

cf
fd

f

cf

c

cf

c

f
c

fu
s

y

fu

so, 0.4045 0.7911 0.3319 0.065 0

0.1297 25.94 mm 25.18 mm

0.01189
200 25.94

25.94 0.00177

3
0.00177
0.00182

0.001177
3 0.00182

0.657

or use 125 0.00177 0.4042 0.625 more compatible

0.7 0.7
0.625

25
0.7 0.95 2068

25.94
175

0.00507
400

0.7 0.95 2068
0.000211

2 3

2

2

2

2

− − + + =

= = ≈

ε =
ε
−

=
−

× =

α =
ε
ε

−
ε
ε

= −
×

=

α = × + = →

ρ = α − ρ =
× ×

×

− ×
× ×

=
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= ρ = ε

=

= =

A bdf f c36.87 mm /m since

0.00182 which is different from 0.002 (close to 37.63 mm /m)

# of NSM tapes per meter
36.87

32
1.152

2

2

= =spacing
1000
1.152

867.9 mm Use one NSM tape @ 850 mm.

Negative moment section at exterior support:

No. 10 bars @ 250 mm

No. of bars/m = 
1000
250

4=

Area of reinforcement/m = 100 mm2 × 4 = 400 mm2/m

400
1000 175

0.00229

0.00229
400
25

0.03657

0.59 0.03578

0.03578 25 1000 175 27,394,793.5 N-mm/m 27.39 kN-m/m

24
17.884 5.5

24
22.54 kN-m/m

0.9 27.39 24.65 kN-m/m 22.54 kN-m/m

2
2

2

2 2

ρ = =
×

=

ω = ρ = × =

= ω − ω = =

= × × × = =

= =
×

=

φ = × = > =

−A
bd

f
f

R
M

f bd

M

M
w L

M M

s
s

s
y

c

n

c

n

u
u n

n u

Do not need strengthening at this section.

5.4.4  Cover Delamination

This is one of the undesirable flexural failure modes of FRP-strengthened beams 
that takes place due to the shear and normal stress concentrations at the FRP curtail-
ment. This failure mode typically competes with the ductile crushing and debonding 
failure modes that take place in moderately reinforced or moderately strengthened 
beams. This is a controlling failure mode that can be delayed by using end-anchor-
age U-wraps. Many models have been proposed in the literature to accurately pre-
dict this failure mode (Roberts 1989; Ziraba et al. 1994; Quantrill, Hollaway, and 
Thorne 1996; Täljsten 1997; Malek, Saadatmanesh, and Ehsani 1998; El-Mihilmy 
and Tedesco 2001). However, these models yield inconsistent results, typically due 
to the empirical nature of these models and due to the fracture nature of the failure 
mode, which is difficult to capture by simplified stress analysis. It is important to 
note that ACI 440.2R-08 does not adopt a separate model that designs against this 
failure mode, but rather uses the same debonding strain as a limit (Figure  5.19). 
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Accordingly, the simplified model implemented by FIB Task Group 9.3 FRP (2001) 
will be studied here.

FIB 2001 presents the ultimate tensile strain approach in the FRP as a means 
to guarantee FRP anchorage to concrete substrate prior to the cover delamina-
tion failure mode. This model was first developed by Holzenkämpfer (1994) and 
was modified by Neubauer and Rostasy (1997). It is based on bilinear bond-shear-
stress–bond-slip law with a linear ascending part and linear descending part, as 
seen in Figure 5.20.

In this model, the maximum FRP force that can be anchored, Nfa,max, and the 
maximum anchorage length, lb,max, are defined as follows:

	 ,max 1= αN C k k b E t ffa c b f f ctm 	 (5.91)

	
,max

2

=l
E t

C f
b

f f

ctm
	 (5.92)

where

α is a reduction factor = 0.9 to account for the effect of inclined cracks on bond 
strength (Neubauer and Rostasy 1997); α = 1 in slabs and beams with suf-
ficient internal and external shear reinforcements;

kc is a factor accounting for the state of compaction of concrete, where kc = 1.0 in 
general for FRP bonded to well-compacted surfaces and kc = 0.67 if FRP is 
bonded to surface not in contact with the formwork during casting;

FRP debonding (see (b))

Longitudinal steel

Cover delamination (see (c))

(a) Behavior of �exural member having bonded reinforcement on soffit

Longitudinal steel

Flexural
crack

Inclined
cracks

FRP pulls away
from substrate

FRP pulls away
from substrate

Debonding progresses
through cement matrix
or along adhesive layer

Delamination progresses
through cement matrix
or along adhesive layer

(b) Debonding initiated by
flexural and/or shear cracks

(c) Cover delamination initiated at
curtailment of bonded FRP reinforcement

FIGURE 5.19  Cover delamination and debonding failure modes of FRP-strengthened 
beams. (Courtesy of ACI 440.2R-08.)
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kb is a geometry factor:

	

=
−

+
≥ ≥k

b

b
b

b

b
b

f

f

f1.06
2

1
400

1.0 with
1
3

	 (5.93)

C1 and C2 are coefficients needing to be calibrated from test results:

0.64

2
for CFRP strips

1

2

=

=

C

C
 (plates) and

b, bf, and tf are in mm, and Ef and fctm are in MPa.
For lb < lb,max, the ultimate force to be anchored is

	
2,max

,max ,max
( )= −N N

l
l

l
l

fa fa
b

b

b

b
	 (5.94)

According to Equation (4.25) of FIB Task Group 9.3,

	

f
M

bh

f f f

f

ctm
cr

ctm r c

c

/6

Thus 0.62 in MPa

7.5 in psi

2≈

≈ =

=
	 (5.95)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.1 0.2 0.3 0.4

Bo
nd

 S
he

ar
 S

tr
es

s M
Pa

Bond Slip mm

τfl

Sfl
Sfo

Fracture Energy
Gf

Holzenkampfer
(fctm= 2 MPa)

FIGURE 5.20  Holzenkampfer model for bond shear stress-slip of externally bonded FRP 
to concrete.
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Example 5.13: Analysis

Fanning and Kelly (2001) tested a series of beams that failed by cover delamination 
(F5-F10). Beam F7 (Figure 5.21) had the following parameters:

2400 MPa

E 155 GPa

A 120 mm x 1.2 mm

f 532 MPa

E 204 GPa

E 39.2 GPa (measured)

80 MPa

L
L

638
1100

0.58

Ignore

* =

=

=

=

=

=

=

= =

ε

f

f

fu

f

f

y

s

c

c

af

a

bi

Solution:

0.62 80 5.55 MPa

5.0 MPa (measured)

7.5
6.7

5.6 MPa O.K.

f f

f

f f

ctm r

ct

r ct

= = =

=

= =

638 mm 638 mm

Beam F7

2800 mm

P/2 P/2

1100 mm 600 mm 1100 mm

155 mm

37 mm

240 mm 166 mm

37 mm
2 φ 12

3 φ 12

120 × 1.2 mm

FIGURE 5.21  Example 5.13 showing the beam section and profile.
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155000 1.2
2 5.55

129.45 mm

638 mm

max
2

max

,max 1

= =
×

×
=

= >

= α

l
E t

C f

l l

N C k k b E t f

b,
f f

ctm

b b,

fa c b f f ctm

1.06
2

120
155

1
120
400

1.03

0.9 0.64 1.0 1.03 155 155000 1.2 5.55 93431.73 N 93.43 kN,max

k

N

b

fa

=
−

+
=

= × × × × × × = =

Calculate the strain at cover delamination:

93.432
120 1.2 155

0.00419,maxN
A E

fcd
fa

f f
ε = =

× ×
=

fd fcd0.41
80

1 155,000 1.2
0.0085ε =

× ×
= >>ε  Unconservative

f bc A f A f A fc s s s y f fα + = +

3 3

2

2

2 2

2 2

c
d c

c

d c
cf

c

cf

c

fcd

f c

fcd

f c( ) ( )
α =

ε
ε

−
ε
ε

=
ε ×
− × ε

−
ε ×

− ε

f
E

f
f

fc
c

c

c

c
c1.71 1.71

4700
3.64 10 0.00325 0.003 Crushing strain4ε = = = × = >−

Even though the strain cε  > 0.003, still use it, since fc  is very high (80 MPa). 
Substituting cε  and fcdε  into the α equation,

1.289
240

1.662
3 240

2

2
c

c
c

c( )
α =

−
−

−

1.289
240

1.662
3 240

80 155 226 204,000
0.00419
240

37

339 532 93.432 10 273,780

2

2

3

c
c

c
c

c
c

c
( ) ( )

( )
−

−
−

× × + × ×
−

−

= × + × =

cMultiply the equation above by 240 2( )−

15,983.6 240 6,869.6 193,175.76 240 37

273,780 240 0

2 3

2

c c c c c

c

( ) ( ) ( )

( )

− − + × − × −

− × − =

3,836,064 15,983.6 6,869.6 193,175.76 53,509,685.52

1,715,400,749 1.5769728 10 131,414,400 273,780 0

2 3 3 2

10 2

c c c c c

c c

− − − +

− − × + − =

22,853.2 3,369,108.24 184,924,085.5 1.748512875 10 03 2 10c c c− + + − × =
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147.42 8,091.82 765,106.36 03 2c c c− − + =

57.67 mm, 0.41
80

1 155,000 1.2
0.0085c fd fcd= ε =

× ×
= > ε

0.00419
240 57.67

57.67 0.00133 0.003cfε =
−

× = <  No crushing

0.00419
240 57.67

203 57.67 0.00334 0.005s ( )ε =
−

− = <  Steel in the transition zone

532
204,000

0.00261
f
E

y
y

s
sε = = = < ε  Tension steel has yielded

0.65 0.25
0.00334 0.00261

0.005 0.00261
0.726φ = +

−
−

=

0.00419
240 57.67

57.67 37 0.000475s y( )ε =
−

− = < ε  Compression steel has not yielded

( ) ( ) ( )= φ − β + φΨ − β + φ β −M A f d c A f d c A f c du s y f f fe f s s

1
3 12

1
3

1
3

0.00133
12 0.00325

1
0.00133

3 0.00325

0.346

cf

c

cf

c

β =
−

ε
ε

−
ε
ε

=
−

×

−
×

=

0.726 339 532 203 0.346 57.67 0.726 0.85 120 1.2

155,000 0.00419 240 0.346 57.67 0.726 226 204,000

0.000475 0.346 57.67 37

36,394,940.42 N-mm 36.4 kN-m

Mu ( )
( )

( )

= × × × − × + × × ×

× × × − × + × ×

× × × −

= =

97.5 kNfailure_expP Pn= =

2
1.1 53.625 kN-mM

P
n

n= × =

0.679 0.726impliedφ = = <
M
M

u

n

 Slightly conservative

On the other hand, Beam F10 is identical to Beam F7 except for having a 
shorter FRP plate, L laf b( 550 mm 638 mm for Beam F7)= = < . In this case,

550 mm 129.45 mm,maxl lb b= > =

Accordingly, the rest of the calculations are the same as that of Beam B7 (i.e., 
36.4 kN-mMu = ). But,

82 kNfailure_expP Pn= =

2
1.1 45.1kN-mM

P
n

n= × =

0.807 0.726 N.G.impliedφ = = >
M
M

u

n

 Slightly nonconservative
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Therefore, the threshold value of the lb,max is too short (nonconservative), and the 
FIB model in this case does not accurately account for the variation in the FRP 
plate length within the shear span. Nevertheless, the plate length in the shear span 
of Beam B10 is very short, 0.5L

L
af
a
= , which is not typically used in practice.

Example 5.14: Design

Arduini, Tommaso, and Nanni (1997) tested a series of beams, one of which (A4) 
failed by cover delamination when strengthened with three parallel CFRP plates 
(one layer), as seen in Figure 5.22. The beam had the following parameters:

110 kN f 540 MPa

70 kN E 200 GPa

f 33 MPa E 167 GPa

E 25 GPa t 1.3 mm

f 2906 MPa*

P

P

n y

n s

c f

c f

fu

= =

= =

= =

= =

=

Solution:

550
700

0.786
L
L
af

a
= =

M
P

n
n

2
0.7 m 38.5 kN-m= × =

0.62 33 3.56 MPaf fctm r= = =

550 mm 550 mm

Beam A4

2000 mm

P/2 P/2

700 mm 600 mm 700 mm

200 mm

37 mm

200 mm 126 mm

37 mm
2 φ 14

2 φ 14 

tf = 1.3 mm

FIGURE 5.22  Example 5.14 showing the beam section and profile.
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167,000 1.3
2 3.56

174.62 mm,max
2

l
E t

C f
b

f f

ctm
= =

×
×

=

550 ,maxl mm lb b= >

Since bf is unknown a priori, assume kb = 1.0 in Equation (5.91).

,max 1N C k k b E t ffa c b f f ctm= α

0.9 0.64 1.0 1.0 200 167,000 1.3 3.56 101,276.2 N 101.28 kN,maxNfa = × × × × × × = =

101.28
150 1.3 167

0.00311 byestimating,maxN
A E

Afcd
fa

f f
fε = =

× ×
= →

This is an obvious disadvantage of this model in solving design problems.

0.41
33

1 167,000 1.3
0.00505

0.9 0.9 0.95
2,906

167,000
0.0149

controls

EC

fd

fu

fcd

ε =
× ×

=

ε = × × =

ε

Unstrengthened beam capacity:

0.85 1f b c A f A fc s s s yβ + =

0.85 33 200 0.826 2
4

14
600

37 2
4

14 5402 2c
c

c( )× × × + ×
π
× × − = ×

π
× ×

4,633.86 184,725.65 6,834,848.98 166,253.1 02c c c+ − − =

3.986 1474.98 02c c+ − =

3.986 3.986 4 1474.98
2

36.46 mm
2

c =
− + + ×

=

c d⊕  Ignore the effect of compression steel.

2
307.9 540 163

0.826 36.46
2

24,597,727.9 N-mm 24.6 kN-m

1= −
β

= × × −
×

= =

M A f d
c

n s y

70
2

0.7 24.5 kN-m O.K.,expMn = × =

38.5
24.6

1.565
M
M

n

n
= =

0.7815 1 1.565
M
M

f
f

d
d

n

n

f f

s y

f=
ρ
ρ

+ =

0.565 0.009445 540 163
0.7815 167,000 0.00311 200

0.00579
f
f

d
d

f fe

s y

f
fλ =

ρ
ρ

ρ =
× × ×
× × ×

=
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where

307.9
200 163

0.009445
A
bd

s
sρ = =

×
=

188.75 mm2A bdf f= ρ × =

145.2 mm 150 mm Actualb
A
t

f
f

f
= = ≈

Use 3 plates of 50 × 1.3 mm at the soffit of the beam, as done experimentally. 
Confirm that the failure mode is cover delamination and not concrete crushing.

f
f

c
d

f
f

f
c

fe
s

y

fe
ρ = α − ρ  Ignoring compression steel

3

2 2

2 2

c
d c

c

d c
fcd

f c

fcd

f c( ) ( )
α =

ε ×
− × ε

−
ε ×

− ε

( ) ( )
=

− ×
−

− ×
× ×

− ×

c
c

c

c

c
0.00579

0.00311
200 0.00209

0.00311
3 200 0.00209

33
519.4 163

0.009445
540

519.4

2 2

2 2

where

1.71
4,700

0.00209

167,000 0.00311 519.4 MPa

f
f

f

c
c

c

fe

ε = =

= × =

0.0156 1.488
200

0.738
200

0.0003898
2

2
c

c
c

c
c

( )
= ×

−
− ×

−
×

Multiply the previous equation by (200 − c)2:

0.0156(40000 400 ) 0.00058 (200 ) 0.0002882 2 3c c c c c− + = − −

0.000868 0.1004 6.24 624 03 2c c c− − + =

115.67 7188.94 718894 03 2c c c− − + =

c = 69.07 mm

0.00311 69.07
200 69.07

0.00164 0.003 . .O Kcf ( )
ε =

×
−

= <

0.00311 163
200

0.00223
540

200000
0.0027 No yielding of tension steel

c
c

s
( )

( )
ε =

× −

−
= < =



136 Strengthening Design of Reinforced Concrete with FRP

200000 0.00223 446.23 MPa= × =fs

0.00311 37
200

0.00076
540

200000
0.0027 No yielding of top steel

c
c

s
( )

( )
ε =

× −

−
= < =

200000 0.00076 152 MPa= × =fs

1
3

0.00164
12 0.00209

1
0.00164

3 0.00209

0.363β =
−

×

−
×

=

M M
M N mm A f d c A f d c A f c du u

n s s f f fe f s s
0.65

38.5 10 ( )6 ( ) ( )
φ

= = = × − = − β + Ψ −β + β −

38.5 10 307.9 446.23 163 0.363 69.07 0.85 519.4

200 0.363 69.07 307.9 152 (0.363 69.07 37)

6 ( )

( )

× = × × − × + × ×

× − × + × × × −

Af

20107767.52
77228.78

260.4 mm 195mm (actual)2 2= = >>Af

Iterate one more time:

f bc A f A f A fc s s s s f fcdα + = +

3

2 2

2 2

c
d c

c

d c
fcd

f c

fcd

f c( ) ( )
α =

ε ×
− × ε

−
ε ×

− ε

1.488
200

0.738
200

33 200 307.9 622
( 37)

(200 )

307.9 622
(163 )
(200 )

260.4 519.4

2

2
c

c
c

c
c

c
c

c
c

( )
×

−
− ×

−
× × + × ×

−
−

= × ×
−
−

+ ×

c = 65.06 mm
0.0015 0.003 O.K.cfε = <

0.00226 0.0027 No yielding of tension steelsε = <

200000 0.00226 451.5 MPafs = × =

0.00311 37
200

0.000647 0.0027 No yielding of top steel
c
c

s
( )

( )
ε =

× −

−
= <

200,000 0.000647 129.34 MPafs = × =

1
3

0.0015
12 0.00209

1
0.0015

3 0.00209

0.36β =
−

×

−
×

=

0.65
38.5 10 ( )6 ( ) ( )

φ
= = = × = − β + Ψ − β + β −

M M
M A f d c A f d c A f c du u

n s s f f fe f s s
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( )

( )

× = × × − × + × ×

× − × + × × × −

Af38.5 10 307.9 451.5 163 0.36 65.06 0.85 519.4

200 0.36 65.06 307.9 129.34 (0.36 65.06 37)

6

19,636,993.8
77,957.6

251.9 mm 260.4mm 195 mm (actual)2 2 2Af = = ≈ >>

No need to iterate.

251.9
1.3

193.8 mm 200mmbf = = ≈

Use four plates of 50 × 1.3 mm covering the entire soffit of beam.
It can be concluded that the FIB model is very conservative in this case. It is also 
worth mentioning that the experimental results presented by Arduini, Tommaso, 
and Nanni (1997) indicate that Beam A4 does not undergo tensile steel yielding, 
which is in agreement with the design calculations shown here.

5.4.5  FRP Debonding

This is the fifth flexural failure mode in beams strengthened with FRP. The 
debonding is initiated at one of the flexural or shear cracks along the span, as seen 
in Figure 5.19b. Accordingly, it is referred to as intermediate induced cracking. 
It is a dominant failure mode in moderately reinforced, moderately strengthened 
beams with FRP sheets or plates extending close to the support competing with 
the ductile crushing failure. This failure mode may be avoided in two ways: 
(a) by keeping the maximum FRP strain below the strain of FRP debonding 
as specified by ACI 440.2R-08, (b) by anchoring the beam’s flexural FRP by 
transverse U-wraps designed according to the adapted shear-friction model of 
ACI 318-11 (Rasheed, Larson, and Peterman 2006; Rasheed et al. 2010, 2011). A 
different model limits the interface shear stress after cracking to a limiting value 
(Rasheed, Larson, and Nayyeri Amiri 2013). In this section, the first approach 
of limiting the FRP maximum strain is explored in comparison with existing 
experimental results. This limiting strain is defined by ACI 440.2R-08 to be

	

0.083 in U.S. units

0.41 in SI units

ε =

=

f
nE t

f
nE t

fd
c

f f

c

f f
	 (5.96)

The limiting FRP ratio between concrete crushing and FRP debonding may be 
written as

	

max
1= β
ε
ε + ε

a
d

b
cu f

cu fd
	 (5.97)



138 Strengthening Design of Reinforced Concrete with FRP

	
0.85max

max

ρ = − ρ
f
f

a
d

f

f
f

c

fd

b
s

y

fd
	 (5.98)

	 = εf Efd f fd 	 (5.99)

In design problems, the statistically correlated linear equation may be used to 
determine a quick initial value for ρf by substituting ffd into Equation (5.86) to replace 
ff. Furthermore, a single iteration may be needed to adjust ρf to its final value by 
invoking the force and moment equilibrium:

Example 5.15: Analysis

Arduini, Tommaso, and Nanni (1997) tested a series of beams strengthened with 
CFRP sheets, one of which failed by sheet debonding (Beam B3). The beam 
(Figure 5.23) had the following parameters:

398 mm 400 GPa

265 mm 3000 MPa

340 MPa 300 mm

30 MPa 0.17 mm

No. of layers ( ) 3

2

2

= =

= =

= =

= =

=

A E

A f

f b

f t

n

s f

s fu
*

y f

c f

51.66 kN-m ( 93.93 kN)

126.69 kN-m ( 230.35 kN)

,exp

,exp

M P

M P

n n

n n

= =

= =

300 mm

50 mm

400 mm 300 mm

50 mm

2 φ 13

3 φ 13

1000 mm 1000 mm

Beam B3
2500 mm

P/2 P/2

1100 mm 300 mm 1100 mm

FIGURE 5.23  Example 5.15 showing the beam section and profile tested by Arduini, 
Tommaso, and Nanni (1997).
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Solution:

1000
1100

0.91 0.9= = >
L
L
af

a
 Plate debonding is more likely to occur than cover 

delamination (Rasheed, Larson, and Nayyeri Amiri 2013).

0.41
30

3 400,000 0.17
0.00497 0.9 0.00641Cfd E fuε =

× ×
= < ε =

Determine the failure mode (whether ductile crushing or debonding):

0.85

0.85
0.003 400

0.003 0.00497
127.95 mm

1

max
1a

d
b

cu f

cu fd

β =

= β
ε ×
ε + ε

= ×
×

+
=

assuming 0biε = , since it is a research specimen (strengthening happened under 
self-weight).

0.85

400,000 0.00497 1,988 MPa

max
maxf

f
a
d

f
f

f

f
c

fd

b
s

y

fd

fd

ρ = − ρ

= × =

f bc A f A f A f

c
c

c
c

c
d c

c
c

f
f

f

f

f f

c s s s y f fd

cf

c

cf

c

cf
fd

f

c
c

c
c

0.85
30

1988
127.95

350
398

300 350
340

1988
0.00404

3 300 0.17
300 350

0.001457 debonding controls

1
3

2.50
400

1
3

2.50
400

where 0.00497
400

1.71
4700

3.64 10 0.00199

max

max

2 2

4

ρ = × × −
×

× =

ρ =
× ×

×
= < ρ

α + = +

α =
ε
ε

−
ε
ε

=
−

−
−

ε =
ε
−

=
−

ε = = × =−

0.00497
50

400
c d

d c
c

c
s

fd

f

( )
ε =

ε −

−
=

−
−

Substituting these expressions into the force equilibrium equation,

c
c

c
c

c
c

c
2.50

400
2.1

(400 )
30 300 265 200000 0.00497

50
400

398 340 153 1988

2

2×
−

− ×
−

× × + × ×
−
−

= × + ×
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Multiply this equation by (400 − c)2,

22,590 400 18,900 263,410 400 50 439,484 400

9,036,000 22,590 18,900 118,534,500 263,410 5,268,200,000

7.031744 10 351,587,200 439,484 0

2 3 2

2 3 3 2

10 2

c c c c c c

c c c c c

c c

( ) ( )( ) ( )− − + − − = −

− − + − −

− × + − =

41,490 8,333,106 470,121,700 7.558564 10 0

85.912 mm

3 2 10c c c

c

− + + − × =

=

0.00497
85.912

400 85.912
0.00136 0.003 O.K.cfε = ×

−
= <

0.00497
350 85.912
400 85.912

0.00418 0.005sε = ×
−
−

= <  Tension steel is in the transition zone.

φ = +
−
−

=

ε = = =
f
E

y
y

s

0.65 0.25
0.00418 0.0017

0.005 0.0017
0.838

where
340

200,000
0.0017

ε = ×
−

−
= < ε ys 0.00497

85.912 50
400 85.912

0.00057  No yielding of compression steel

= ε = × =f Es s s 200,000 0.00057 114 MPa

1
3

0.00136
12 0.00199

1
0.00136

3 0.00199

0.358β =
−

×

−
×

=

( ) ( ) ( )= φ − β + φΨ −β + φ β −M A f d c A f d c A f c du s y f f fd f s s

( )

( ) ( )

= × × − × + × × ×

× − × + × × × × −

= =

M 0.838 398 340 350 0.358 85.912 0.838 0.85 153 1988

400 0.358 85.912 0.838 265 114 0.358 85.912 50

115,713,284.7 N-mm 115.713 kN-m

u

126.69 kN-m,expMn =

φ = = >
M

M
u

n
0.913 0.838implied

,exp

 Slightly unconservative, should be < 0.838.

Using the statistically correlated Equation (5.86),

0.001457 1988
0.00379 340

400
350

2.569
f
f

d
d

f fd

s y

fλ =
ρ
ρ

=
×
×

× =

0.7815 2.569 1 3 3 48.365 145.47 126.69,exp
M
M

M Mn

n
n n= × + = = × = > =

Where Mn = 48.365kN−m from Example 5.11, the prediction of equation (5.96) is 
slightly unconservative.
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Example 5.16: Design

Ross et al. (1999) tested a series of beams by fixing the area of FRP and changing 
the area of steel. Beams 1B and 1C in group 1 failed by FRP debonding and are 
selected in this example (Figure 5.24).

7950 psi

60 ksi

8 in. 0.0175 in. (actual)

108 in.

320 ksi

20000 ksi

0.22 in.

29,000 ksi

(1 ) 80.1kN 18 kips

(1 ) 71.2 kN 16 kips
use the more conservative ultimate load

16
2

3 ft 24 k-ft

2

=

=

= ×

=

=

=

=

=

= =

= =

= × =

f

f

A

L

f

E

A

E

P B

P C

M

c

y

f

f

fu
*

f

s

s

n

n

n

εbi = 0 (research specimen)

36 in 36 in

Beam 1B or 1C

108 in

P/2 P/2

36 in 36 in

8 in

2 in

8 in 4 in

2 in
2 # 3

2 # 3

8 × 0.0175 in

36 in

FIGURE 5.24  Example 5.16 showing the beam section and profile.
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Solution:

Assume ductile crushing failure mode.

0.22
8 6

60
7.95

6
8

0.02591Q
f
f

d
ds

y

c f
= ρ =

×
× × =

24 12
7.95 8 8

0.0259 0.85
6
8

0.07332 2 1 2=
φ

+ Ψ − =
×
× ×

+ × − =Q
M
f bd

Q
d
d

u

c f
f

f

2 0.208 0.0259 2.77 0.0733 0
2

a
d

a
df f

( )− − × × + × =

1.995 1.995 11.08 0.0733
2

0.1078 0.862 .

0.6525 1.321 in.

2

1=
− − ×

= = β

= =

a
d

a in

c
f

0.003
8

0.003
1.321

8 1.321 0 0.01516
c

cfe bi( ) ( )ε = − − ε = − − =

0.083 0.083
7,950

1 20,000 0.0175
0.0125 0.9

f
nE tfd

c

f f
fuε = =

× ×
= < ε

0.9 0.9 0.01368 debonding controlsC
f
Efu E
fu

f
ε = × × =

Using the statistically correlated linear equation for initial estimate of ρf:
Unstrengthened beam capacity:

0.85 1β + =f b c A f A fc s s s y

0.85 7.95 8 0.6525 0.22
87

2 0.22 60c
c

c( )× × × + × − = ×

35.274 19.14 38.28 13.22c c c+ − =

35.274 5.94 38.28 02c c+ − =

5.94 5.94 4 35.274 38.28
2 35.274

0.961 in.
2

c =
− + + × ×

×
=

0.003
0.961

0.961 2 0.00324 (tension)( )ε = − = − > εs y

f fs y=

0.85 1f b c A f A fc s y s yβ = +

0.44 60
0.85 7.95 8 0.6525

0.748 in.c =
×

× × ×
=

2 2
1 1= −
β

−
β

−M A f d
c

A fy
c

dn s y s
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0.22 60 6
0.6525 0.748

2
0.22 60 2

0.6525 0.748
2

99.157 k-in.

8.263 k-ft

M

M

n

n

= × −
×

+ × × −
×

=

=

2
3 ft

6
2

3 9 k-ft,expM
P

n
n= × = × =

Close values, use the Mn this time:

24
8.263

2.9,expM
M
n

n
= =

M
M
n

n
0.7815 1 2.9,exp = λ + =

λ = 2.431

2.431 0.00458 60 6
20000 0.0125 8

0.00201
f d

f d
f

s y

fd f
ρ =

λρ
=

× × ×
× ×

=

8 0.0175
8 6

0.00292 unconservative,actualρ =
×

×
=f

Perform another iteration:

f
f

c
d

f
f

f
c

fd
s

y

fd
ρ = α − ρ

8 3 8
4.682

8
7.306

8

1.71
57,000

3 10 0.00267

0.00201 4.682
8

7.306
8

7.95
250 6

0.00458
60
250

2 2

2 2

2

2

5

2

2

( ) ( ) ( )

( ) ( )

α =
ε ×
− × ε

−
ε ×

− × ε
=

−
−

−

ε = = × =

= ×
−

− ×
−

× − ×

−

c
c

c

c

c
c

c

c

f
f

f

c
c

c

c

c

fd

c

fd

c

c
c

c
c

0.00311 8 0.02481 8 0.03872

0.06353 0.1954 0.04976 0.199 0

1.069 in.

2 2 3

3 2

c c c c

c c c

c

( ) ( )× − = × − −

− − + =

=

0.0125 1.069
8 1.069

0.001928

1
3

0.001928
12 0.00267

1
0.001928

3 0.00267

0.36

cf ( )
ε =

×
−

=

β =
−

×

−
×

=

0.0125 6
8

0.00889 0.005 0.9

0.0125
8

2 0.00168

( )
( )

( )
( )

ε =
−

−
= > φ =

ε =
−

− = −

c
c

c
c

s

s



144 Strengthening Design of Reinforced Concrete with FRP

Compression steel is in tension (not yielded),

29,000 0.00168 48.72 ksifs = × =

24 12 ( ) ( ) ( )
φ

= = × = − β + Ψ −β + − β
M

M A f d c A f d c A f d cu
n s y f f fd f s s

288 0.22 60 6 0.36 1.069 0.85 250 8 0.36 1.069

0.22 48.72 2 0.36 1.069

( ) ( )

( )

= × × − × + × × − ×

+ × × − ×

Af

196.57
0.85 250 8 0.36 1.069

0.121in. 0.14 in.2 2Af ( )
=

× × − ×
= < Unconservative

This is the second example in which the FRP debonding model shows uncon-
servative results.

Chapter Problems

Problem 5.1
A library building has a simply supported rectangular concrete beam reinforced 
with four No. 6 bars in tension, two No. 3 bars in compression and No. 3 stirrups at 
6 in. (152 mm) on center in shear. The details of the beam are shown in Figure 5.P.1. 
As part of the library upgrade, the beam is subjected to a 40% increase in live load, 
as shown in Figure 5.P.2. Determine the CFRP area that needs to be bonded in flex-
ure. Use VWRAP CFRP sheets with a modulus of 33,000 ksi (227,527 MPa) and a 
tensile strength of 550 ksi (3,792 MPa) based on the net fiber area that has a net fiber 
thickness of 0.0065 in. (0.165 mm).

12"

20"

1.5"

2#3
#3 @ 6" c/c

4#6

FIGURE 5.P.1

f ć = 4 ksi

fy = 60 ksi

20 ft

WDL + WLL

FIGURE 5.P.2
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Span 20 ft 6.1 m

B 12 in. 305 mm

H 20 in. 508 mm

f ′c 4 ksi 27.6 MPa

fy 60 ksi 414 MPa

Top bars #3 ϕ = 9.5 mm

Main bars #6 ϕ = 19 mm

WDL 0.9 k/ft 13.14 kN/m

WLL 0.9 k/ft 13.14 kN/m

Problem 5.2
Repeat Example 5.1 to design the required FRP by taking 2= +d hf

t , tf = 0.04 in. 
with no rounding off or approximating numbers in the equations. Also, check if the 
strengthening limits due to loss of composite action are satisfied.

Problem 5.3
For the beam section given in Figure 5.P.3, design for the area of FRP required to 
increase the section capacity by 4% only.

4 , 60 , 0.0008= = ε =f ksi f ksic y bi

= = − − − × =d dt 14 1
3
8

1
2

7
8

12.19"

0.04", 5260 ksi, 90 ksi= = =t E ff f fu

9"

14" 12.19"

#3 @ 5" c/c

4#7

FIGURE 5.P.3

Problem 5.4
Derive the coefficients of the approximate Equation (5.77) A3, B3, and D3 for a doubly 
reinforced rectangular section in case of yielding and no yielding of compression 
steel for the failure mode of FRP rupture.

Problem 5.5
Decker (2007) designed, built, strengthened, and tested rectangular reinforced con-
crete beams having the following properties:
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b 6 in. (152.4 mm)

h 12 in. (304.8 mm)

Ct 1 in. (25.4 mm)

Cb 1 in. (25.4 mm)

hs 10 in. (254 mm)

bs 4 in. (101.6 mm)

hs

bs
b

h

Ct

Cb

# 3 stirrups
@ 5 in. o.c.

2–#3

2–#5

FIGURE 5.P.4

See Figure 5.P.4.

f fc y bi5.2 ksi (35.9 MPa), 69.64 ksi (480.2 MPa), 0= = ε =

t E ff f fu0.0065" (0.165 mm), 33,000 ksi (227.5 GPa), 550 ksi (3792 MPa)= = =

Decker used VWRAP C100 CFRP for strengthening. Use the same material to 
strengthen the beam to a 20% increase in the unstrengthened beam moment capacity. 
Assume no need to strengthen the beam in shear.

Problem 5.6
Repeat Problem 5.5 with a 40% strengthening ratio increase over the bare beam. 
Designate the failure mode involved. Assume no need to strengthen the beam in shear.

Problem 5.7
Repeat Problem 5.5 with a 60% strengthening ratio increase over the bare beam. 
Designate the failure mode involved. Assume fire not to be a hazard in this case. 
Also, assume no need to strengthen the beam in shear.

Problem 5.8
Decker (2007) designed, built, strengthened, and tested reinforced concrete T-beams 
having the following properties:

bf 16 in. (406.4 mm)

hf 4 in. (101.6 mm)

bw 6 in. (152.4 mm)

hw 8 in. (203.2 mm)
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Ct 1 in. (25.4 mm)

Cb 1 in. (25.4 mm)

hs 10 in. (254 mm)

b′ 13 in. (330.2 mm)

bs 4 in. (101.6 mm)

hw

hf

4#3 #3 stirrups
@ 5 in. o.c.

Cb

Ct

2#5
hs

bf
b´

bsbw

FIGURE 5.P.5

See Figure 5.P.5.

f fc y bi4.9 ksi (33.5 MPa), 69.64 ksi (480.2 MPa), 0= = ε =

t E ff f fu0.0065" (0.165 mm), 33,000 ksi (227.5 GPa), 550 ksi (3792 MPa)= = =

Decker used VWRAP C100 CFRP for strengthening. Use the same material to 
strengthen the beam to a 30% increase in the unstrengthened beam moment capacity. 
Designate the failure mode involved. Assume no need to strengthen the beam in shear.

Problem 5.9
Repeat Problem 5.8 with a 60% strengthening ratio increase over the bare beam. 
Designate the failure mode involved. Assume fire not to be a hazard in this case. 
Also, assume no need to strengthen the beam in shear.

Problem 5.10
Design the slab given in Figure 5.P.6 based on ACI 318-11 code, and then strengthen 
it based on ACI 440.2R-08, assuming no change in dead load. The slab is a two-span, 
continuous solid, one-way slab with the following parameters:

wLL = 4.8 kN/m2

wLLupgrade = 7.0 kN/m2

fy = 414 MPa
f ′c = 25 MPa
Slab thickness = 180 mm

Use NSM tape from Example 5.12 for negative moment region and CFRP sheets 
from Example 5.15 for positive moment region.
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4.5 m 5.0 m

FIGURE 5.P.6

Problem 5.11
Al-Tamimi et al. (2011) have designed, built, strengthened, and tested the beam 
shown in Figure 5.P.7 (B85P). It has a CFRP plate extending 1,521 mm along the 
span of the beam covering 85% of the shear span. ReCon Plate CFL Grade CF210, 
100-mm wide by 1.4-mm thick, was used to strengthen the beam ( f *

fu = 2500 MPa, 
Ef = 215 GPa). The average measured compressive strength of the concrete was 54 
MPa. The modulus of elasticity and yield strength for the tensile steel reinforcement 
were 202 GPa and 611 MPa, respectively. Determine the capacity of the beam using 
the FIB model for cover delamination. Compare the ultimate load predicted to the 
experimental ultimate load at cover delamination of 60.7 kN and conclude.

70 mm 70 mm

75 mm 75 mm

a

a

Closed tie

110 mm

180 mm

d = 155 mm

Section a-a

Φ 8 mm@ 80 mm C-C

2 Φ 10 mm
1840 mm

10 sp. @ 80 mm = 800 mm 10 sp. @ 80 mm = 800 mm

2 Φ 10 mm

P

100 mm Φ 8 mm@ 80 mm C-C

(a) Longitudinal and cross-section reinforcement details of the beam

1690 mm

567 mma = 561.5 mm a = 561.5 mm

(b) Details of Tested Beams

155 mm

FIGURE 5.P.7
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Problem 5.12
Al-Tamimi et al. (2011) have designed, built, strengthened, and tested the beam 
shown in Figure 5.P.8 (B70PW). It has a CFRP plate extending 1352 mm along the 
span of the beam covering 70% of the shear span. ReCon Plate CFL Grade CF210, 
100-mm wide by 1.4-mm thick, was used to strengthen the beam ( f *

fu = 2500 MPa, 
Ef = 215 GPa). The average measured compressive strength of the concrete was 54 
MPa. The modulus of elasticity and yield strength for the tensile steel reinforcement 
were 202 GPa and 611 MPa, respectively. Determine the capacity of the beam using 
the ACI440.2R-08 model for plate debonding. Compare the ultimate load predicted 
to the experimental ultimate load at plate debonding of 67.7 kN and conclude.

200 mm 200 mm
1352 mm

a = 561.5 mm a = 561.5 mm
d

d

P

110 mm

100 mm
Section d-d

180 mmd = 155 mm567 mm

FIGURE 5.P.8

Problem 5.13
Wuertz (2013) designed, built, strengthened, and tested rectangular reinforced con-
crete beams having the section geometry shown in Figure 5.P.9:

10"

4"
1"

6"

12"

1"

# 3 stirrups
@ 5 in. o.c.

2–#3

2–#5

FIGURE 5.P.9

f fc y bi9.4 ksi (64.9 MPa), 71 ksi (490 MPa), 0= = ε =

t E ff f fu0.05" (1.27 mm), 3030 ksi (20.9 GPa), 66.72 ksi (460.3 MPa)= = =

Wuertz used V-WRAP EG50 GFRP for strengthening in addition to two NSM 
steel bars. The two NSM bars were installed in grooves in the concrete cover. The 
GFRP was applied as one layer only and was wrapped 5” (127 mm) up the sides from 
the soffit. Use the same strengthening design to determine the strengthened beam 
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moment capacity if the GFRP was continuously anchored against cover delamina-
tion and sheet debonding. Assume no need to strengthen the beam in shear.

Problem 5.14
Spadea, Bencardino, and Swamy (1998) designed, built, strengthened, and tested a 
rectangular reinforced concrete beam (A3.3) having the section geometry and beam 
profile shown in Figures  5.P.10 and 5.P.11. Knowing that beam A3.3 had distrib-
uted steel U-wrap anchors along its span, it is expected that the two modes of cover 
delamination and plate debonding were avoided. Considering the rest of the possible 
failure modes, design the FRP plate width (bf) so that it will provide an ultimate load 
of 98.3 kN. Compare the answer to the 80-mm width of the actual plate.

140 mm

300 mm

25mm

φ 4 mm @
150 mm c/c

2 φ 16 mm

2 φ 16 mm

bf × 1.2 mm

FIGURE 5.P.10

4700 mm

Beam A3.3

4800 mm

P/2 P/2

1800 mm 1200 mm 1800 mm

FIGURE 5.P.11

30.5 MPa, 435 MPa, 0= = ε =f fc y bi

1.2 mm, 152 GPa, 2300 MPa= = =t E ff f fu
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6 Shear Strengthening of 
Concrete Members

6.1  OVERVIEW

Experimental studies have shown that shear strengthening of concrete members is pos-
sible to accomplish by applying the fibers transverse to the member axis or perpendicular 
to the shear cracks (Triantafillou 1998; Triantafillou and Antonopoulos 2000). Increasing 
the shear strength may cause the flexural failure to dominate the behavior, which gen-
erally provides more ductile response than that of shear failure (ACI 440.2R-08 2008).

Chapter 11 of ACI 440.2R-08 provides a model to compute the extra shear 
strength furnished by FRP to concrete beams and columns. This extra shear strength 
depends on the concrete strength, the type of FRP wrapping scheme, the geometry 
of the concrete member, and the amount of steel shear reinforcement provided. For 
external FRP shear stirrups in the form of discrete strips, the center-to-center spac-
ing between the strips should not exceed d/4 plus the width of the strip. In other 
words, the clear distance between the strips should not exceed d/4.

6.2  WRAPPING SCHEMES

For beams and columns of rectangular sections, the FRP wrapping schemes are as 
illustrated in Figure 6.1.

	 1.	Complete wrapping: FRP systems wrapped around all four sides of the sec-
tion represent the most efficient scheme. This scheme is typically used in 
columns, since all four sides of the section are accessible (Figure 6.1a).

	 2.	U-wrapping: FRP systems wrapped around three sides of the section in 
beams are used to improve shear strength where it is impractical to com-
pletely wrap the section due to the existence of the slab attached to the beam 
from both sides (interior beams, Figure 6.1b) or from one side (exterior or 
spandrel beams, Figure 6.1c). This technique is less efficient than the com-
plete wrapping scheme.

	 3.	Side bonding: FRP systems bonded along the two opposite sides of the web 
of the beam are used to improve the shear strength where it is impractical to 
U-wrap the section due to the existence of section enlargement such as the bulb 
tee (Figure 6.1d). This technique is the least efficient of the three schemes.

For all three wrapping schemes, it is possible to install a continuous sheet along 
the span of the member as well as install discrete strips. The first case of fully 
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encasing the member with FRP is discouraged due to the potential prevention of 
migration of moisture as well as the more difficult detection of potential localized 
delaminations. The second case of installing discrete strips is the more widely used 
technique, in which the center-to-center distance between strips depends on the 
amount of FRP needed, which translates into the total number of strip layers and 
the width of each strip. The wider the strips and the fewer the number of layers used, 
the more efficient the shear strengthening scheme is, since the interface shear stress 
transfer to concrete is lower, which makes the failure mode of sheet debonding less 
likely to take place.

6.3  ULTIMATE AND NOMINAL SHEAR STRENGTH

The design shear strength of the member having FRP shear strengthening should 
exceed the required shear or the demanded shear value.

	 V Vn uφ ≥ 	 (6.1)

The strength reduction factor φ  is as per ACI 318-05 (2005). The load factors used to 
compute Vu  are also per ACI 318-05, as specified by ACI 440.2R-08. These factors 
are the same as those of ACI 318-11 (2011).

The nominal shear strength, including the FRP contribution, may be obtained 
by adding this FRP contribution to that of concrete and reinforcing steel stirrups as 
follows:

	 φ = φ + +ΨV V V Vn c s f f( ) 	 (6.2)

(a) Completely wrapped column (b) U-Wrapping of interior beam

(c) U-Wrapping of spandral beam (d) Side bonding of AASHTO girder

FIGURE 6.1  Wrapping schemes for FRP shear strengthening.
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where Vc is computed based on Equations (11.3) to (11.8) of ACI 318-05, Vs is com-
puted based on Section 11.5.7.2 of ACI 318-05 as specified by ACI 440.2R-08. The 
value of Ψf is determined to be 0.85 for U-wraps and side bonding based on a reli-
ability study of existing experimental data. On the other hand, Ψf is selected to be 
0.95 for fully wrapped section based on the lower bond dependence. Vf is computed 
based on the following equations:

	

( )
=

α + α
V

A f d

S
f

fv fe fv

f

sin cos
	 (6.3)

where

	 =A nt wfv f f2 	 (6.4)

	 = εf Efe f fe 	 (6.5)

where εfe is the effective tensile strain developed in the FRP shear stirrups at nomi-
nal shear strength. This effective tensile strain is controlled by the failure of the 
strengthened concrete member and by the failure of the FRP stirrups. The variables 
dfv and Sf are denoted in Figure 6.2.

6.4  DETERMINATION OF εfe

The value of εfe is determined as follows:

	 1.	Fully wrapped section: The loss of aggregate interlock of the concrete is 
observed to take place at a fiber strain much lower than the ultimate fiber 
strain (Priestley, Seible, and Calvi 1996):

	 ε = ≤ εfe fu0.004 0.75 	 (6.6)

	 2.	U-wraps or plies bonded to two sides: U-wraps (three-sided wraps) and 
bonded side plies (two-sided strips) have been observed to delaminate 
from concrete prior to the loss of aggregate interlock. Accordingly, bond 

d
h dfv

Sf
wf

wf

Sf

FIGURE 6.2  Variables for FRP shear-strengthening design.
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stresses have been analyzed to determine the effective strain level that can 
be attained (Triantafillou 1998):

	 kfe v fu 0.004ε = ε ≤ 	 (6.7)

The bond reduction coefficient (kv) is a function of the concrete strength, the ply 
stiffness, and the wrapping scheme. This coefficient may be computed based on the 
model by Khalifa et al. (1998):

	
=

ε
≤k

k k L
v

e

fu468
0.75 in U.S. customary units1 2 	 (6.8)

	
=

ε
≤k

k k L
v

e

fu11,900
0.75 in SI units1 2

	 (6.9)

where

	
=k

fc

4000
in lb-in. units1

2/3

	 (6.10)

	
=k

fc

27
in SI units1

2/3

	 (6.11)

	

=

−

−
k

d L

d

d L

d

fv e

fv

fv e

fv

for U-wraps

2
for two bonded sides

2 	 (6.12)

ACI 440.2R-08 defines Le as the active bond length, which is the length over 
which the majority of the bond stress is maintained:

	 ( )
=L

nt E
e

f f

2500
in lb-in. units0.58 	 (6.13)

	 ( )
=L

nt E
e

f f

23,300
in SI units0.58 	 (6.14)

Even though the kv factor has been validated for a high-shear, low-moment region, 
ACI 440.2R-08 reports that it is sufficiently conservative for areas of high flexural 
and shear stresses as well as for negative-moment regions.
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6.5  REINFORCEMENT LIMITS

The shear force provided by steel stirrups and FRP stirrups is limited to the level 
set by ACI 318-05 for the force in steel only to avoid crushing of the concrete struts.

	
+ ≤V V f b ds f c w8 in lb-in. units 	 (6.15)

	
+ ≤V V f b ds f c w0.66 in SI units 	 (6.16)

Example 6.1: Design

For the beam in Example 2.3, design the shear strengthening required if wu  = 7 
k/ft (see Figure 6.3).

f f

t E f

c yt

f f fu

= =

= = =

4 ksi 50 ksi

0.0065" 33,000 ksi 550 ksi*

Solution:

The existing shear reinforcement per Example 2.3 is:

No. 4 stirrups at 4.5" o.c. for the first 20.8" from the support
No. 4 stirrups at 6" o.c. up to 9.9 ft from the support
No. 4 stirrups at 9" o.c. up to 12 ft from the support

V w
L

u u
n= = × =
2

7
28
2

98 k

Vud = − × =98 7
19.75

12
86.48 k

22.48 kφ =Vc  (from Example 2.3)

28 ft

12"

22"
19.75"dfv = 15.75"

Wu = 7 k/ft

FIGURE 6.3  Beam profile and cross section for Example 6.1; dfv = 15.75”
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No. 4 stirrups at 4.5" o.c. for a distance of 20.8"

0.75 0.4 50 19.75
4.5

65.83 k1φ =
× × ×

=Vs

88.311φ + φ = >V V Vc s ud  No need for external shear strengthening in this 
region.

No. 4 stirrups at 6" up to 9.9'

0.75 0.4 50 19.75
6

49.375 k2φ =
× × ×

=Vs

71.86 k2φ + φ =V Vc s

x V V Vcs u c sDetermine distance from support to :2 2( )( )= φ +

98 71.86
7

3.73 ft2 2( )φ + = − =
−

=V V V w x xc s u u cs cs

Vu = − × =98 7
20.8"

12
85.87 k20.8"

85.87 71.86 14.01kφΨ = − =Vf f

V

A f d
S

f

fv fe fv

f

=
×

=

=

14.01
0.75 0.85

21.98 k

V
w E k

w
df

f f v fu

f

=
× × × × ε ×

+
=

2 0.0065 15.75

4

21.98 k

Cfu E fuε = ε = × =0.95
550

33,000
0.0158*

k = 11

Le

( )
=

× × ×
=

2,500

1 0.0065 33,000 10
2.022 in.

3 0.58

k =
−

=
15.75 2.022

15.75
0.8722

kv =
× ×

×
= <

1 0.872 2.022
468 0.0158

0.238 0.75

w wf f+ =21.98
19.75

4
25.41

wf = =
108.53

3.43
31.64 in. Too big

w wf f( )+ =21.98 2 25.41

wf
43.96
3.43

12.82 in. Use 13" @ 15" c/c (one layer)= =
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Theoretically between 1.73 ft (20.8”) and 3.73 ft
Practically between 1.73 ft and 9.9 ft

0.75 0.4 50 19.75
9

32.92 k3φ =
× × ×

=Vs

V Vc s 22.48 32.92 55.4 k3( )φ + = + =

( )= φ +e x dis ce from port to V V Vcs u c sDetermin tan sup3 3

55.43 3( )φ + = = −V V V w xc s u u cs

xcs =
−

=
98 55.4

7
6.09' outside 9.9'-11.96'3  where steel stirrup spacing = 6"

(i.e., no need for FRP between 9.9 ft and 12 ft)

98 7 9.9 28.7 55.4 k O.K.3( )− = − × = <φ + =V w x k V Vu u c c s

98 7 12 14 k

2 98 11.24
7

12.39 ft

Between 12' and 12.4' we need FRP

Use 1 layer of 13" @ 18" c/c for this distance ( /4 clear spacing)

11.96

4

= − × =

=
− φ

=
−

=

V

x
V V

w

d

u

c
u

c

u

Practically use one layer of 13" @ 18" o.c. between 9.9 ft and 12.9 ft (three U-wraps 
within 3 ft).
Check the reinforcement limit:

V

V

V V

s

f

s f

=
× ×

=

=
× × × × × × ×

=

+ = < × × = =

0.4 50 19.75
6

65.83 k

2 1 0.0065 13 33,000 0.238 0.0158 15.75
15

22.02 k

87.85k 8 4,000 12 19.75 119,913.57 lb 119.913 k O.K.

2

2

Example 6.2: Design

The column in Example 2.4 is located in a building that underwent a change in 
its importance category from Regular Building to Essential Facility. The loads were 
increased as follows:

Mu = 84.38 k-ft Mu = 84.38 k-ft
Vu = 18.75 k Vu = 18.75 k
Pu = 187.5 k Pu = 24 k

Figure 6.4 shows the column section and profile.

f fc yt= =4 ksi 40 ksi



160 Strengthening Design of Reinforced Concrete with FRP

Solution:
Case A: Nu = Pu = 187.5 k

0.75 2 1
187,500

2,000 14 12
4,000 12 11.69 20,734.54 lb 20.73 k

( )
( )( )φ = × × +

×
= =Vc

18.75 kφ > =V Vc u

But V
2

10.37 k> φ =
V

u
c  Minimum reinforcement is provided.

Case B: Nu = Pu = 24 k

0.75 2 1
24,000

2,000 14 12
4,000 12 11.69 14,258.7 lb 14.26 k

( )
( )( )φ = × × +

×
= =Vc

18.75 kφ <Vc

14.26
0.75 0.22 40 11.69

5.5
28.29 k 18.75 k( )φ + = +

× × ×
= >V Vc s

No external shear strengthening is required. This is an atypical situation, since 
shear demand is not significantly increased in columns. However, an AASHTO 
(American Association of State Highway and Transportation Officials) extreme 
load event on bridge piers may demand high-impact lateral force on the column, 
which translates into external shear strengthening.

Example 6.3: Analysis

Norris, Saadatmanesh, and Ehsani (1997) tested three beams deficient in shear, 
two of which were externally strengthened in shear using CFRP. The control beam 
was designated by C48, and the strengthened beams were designated by IE and 
IIE. The strengthened beams had two layers of CFRP U-wrap transverse fabric 

14"

12"

1.5"

8#7

#3 ties @ 5.5"1.5"Pu

Vu

Pu

Mu

Mu

Vu

9'

FIGURE 6.4  Example 6.2 showing the column section and profile.
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covering the entire sides of the beams. The geometric and material parameters of 
the beams are given in Figure 6.5.

Beam IE: ffu = 56.5 ksi (389.8 MPa), Ef = 4943 ksi (34.1 GPa), tf = 0.043 in. (1.09 mm)
Beam IIE: ffu = 57.3 ksi (395.3 MPa), Ef = 4841 ksi (33.4 GPa), tf = 0.043 in. (1.09 mm)
f ′c = 5.3 ksi (36.6 MPa), fy = 61 ksi (421 MPa)

Solution:

The unstrengthened beams have their steel stirrups provided not in accordance 
with ACI 318-11 (spacing = 8.1 in. > d/2).

d d= − − − × = =8 1
1
4

1
2

5
8

6.44 in. fv

V f b dc c w= = × × = =2 2 5300 5 6.44 4688.4 lb 4.69 k

No. 2 stirrups at 8.1" o.c.

Vs =
× ×

=
0.1 61 6.44

8.1
4.85 k

V V V k Vn c s= + = < =9.54 11.8 kexp

V
A f d

Sf f
fv fe fv

f
Ψ = ×0.85

Cfu E fuε = ε = × =0.95
56.5
4943

0.011*

k = =
5300
4000

1.211

2/3

Le

( )
=

× × ×
=

2500

1 0.043 4943 10
2.032 in.

3 0.58

k =
−

=
6.44 2.032

6.44
0.6842

Beam IE or IIE

42" (1220 mm)

P/2 P/2

18" (457 mm)
6"

(152 mm) 18" (457 mm)

5" (127 mm)

8"
(203 mm)

1" (25 mm)

No. 2 @ 8.1"
(206 mm) c/c

2 No. 5

2 No. 3

FIGURE 6.5  Example 6.3 showing the beam section and profile.
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kv =
× ×

×
= <

1.21 0.684 2.032
468 0.011

0.327 0.75

Vf fΨ = ×
× × × × × ×

=0.85
2 0.043 12 4943 0.327 0.011 6.44

12
8.37 k

V V V V k k k Vn c s f f= + + ψ = + = > =9.54 8.37 17.91 15.28 k N.G.exp

The ACI 440 model overestimates the shear capacity with FRP in this case. One 
main reason could be the size effect. The model of Khalifa et al. (1998) was cali-
brated against typical beam cross sections, while this beam is on the smaller side.

Example 6.4: Analysis

Al-Sulaimani et al. (1994) tested 16 reinforced concrete beams deficient in shear 
and strengthened in flexure and/or shear using GFRP plates. The control beam 
was designated as CO, and one of the strengthened beams was designated as SO. 
The strengthened beam had side-bonded transverse strips that were 20-mm wide 
at 50-mm on center covering the entire sides of the shear spans. The geometric 
and material parameters of the strengthened beam are given in Figure 6.6.

f’c = 37.7 MPa,  fy = 450 MPa
GFRP plate: ffu = 200 MPa,  Ef = 15.65 GPa,  εfu = 0.01278,  tf = 3 mm

Solution:

The unstrengthened beams have their steel stirrups provided not in accordance 
with ACI 318-11 (spacing = 200 mm > d/2).

d dfv= + = =76 37 113 mm

V
f

b dc
c

w= = × × = =
6

37.7
6

150 113 17,345.6 N 17.35 kN

ϕ 6-mm stirrups at 200 mm o.c.

Vs =
× ×

= =
56.55 450 113

200
14,377.5 N 14.38 kN

V V V Vn c s= + = < =31.73 kN 34.5 kN O.K.exp

150 mm

37 mm

150 mm 76 mm

37 mm
2 φ 6

3 φ 12

φ 6 mm@200 mm c/c Beam SO

1200 mm

P/2 P/2

400 mm 400 mm 400 mm

20 mm strips at 
50 mm c/c

FIGURE 6.6  Example 6.4 showing the beam section and profile.
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V
A f d

S
f f

fv fe fv

f
Ψ = ×0.85

Cfu E fuε = ε = × =0.75 0.01278 0.00959 GFRP interior exposure*

k = =
37.7
27

1.251

2/3

Le

( )
=

× × ×
=

23,300

1 3 15.65 10
45.48 mm

3 0.58

k =
− ×

=
113 2 45.48

113
0.1952

kv =
× ×

×
= <

1.25 0.195 45.48
11,900 0.00959

0.097 0.75

kfe v fu 9.30 10 0.0044ε = ε = × <−

Vf f 0.85
2 3 20 15,650 0.000930 113

50
3,355.1N 3.36 kNΨ = ×

× × × × ×
= =

V V V V Vn c s f f= + + ψ = + = < =31.73 kN 3.36 kN 35.09 kN 41.5 kN O.K.exp

The ACI 440 model underestimates the shear capacity with FRP in this case, 
which is on the conservative side.

Example 6.5: Analysis

Khalifa and Nanni (2000) tested six reinforced concrete T-beams deficient in 
shear and strengthened in shear using CFRP sheets. The control beam was des-
ignated as BT1, and one of the strengthened beams was designated as BT4. This 
strengthened beam had no steel stirrups and had transverse CFRP U-wrap strips 
of 50-mm width at 125-mm on center extending the entire web height along the 
clear span. The geometric and material parameters of the beams are given in 
Figure 6.7.

f ′c = 35 MPa, fy = 470 MPa for ϕ28-mm bars, and fy = 350 MPa for ϕ13-mm and 
ϕ10-mm bars.

CFRP sheet: ffu = 3790 MPa, Ef = 228 GPa, tf = 0.165 mm

150 mm

380 mm

305 mm

100 mm
2 φ 13

2 φ 28

Beam BT4
2340 mm

P/2 P/2

1070 mm 200 1070 mm

50 mm U-wrap strips at 125 mm c/c

FIGURE 6.7  Example 6.5 showing the beam section and profile.
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Solution:

The unstrengthened beams have no steel stirrups provided in the clear span.

d

dfv

= + − − − =

= − − − =

100 305 25 10
28
2

356 mm

305 25 10
28
2

256 mm

6
35
6

150 356 52,653.1N 52.65 kN 90 kN O.K.exp= = × × = = < =V
f

b d Vc
c

w

V
A f d

Sf f
fv fe fv

f
Ψ = ×0.85

Cfu E fuε = ε = × =0.95
3,790

228,000
0.0158*  CFRP interior exposure

k = =
35
27

1.191

2/3

Le

( )
=

× × ×
=

23,300

1 0.165 228 10
51.71mm

3 0.58

k =
−

=
256 51.71

256
0.82

kv =
× ×

×
= <

1.19 0.8 51.71
11,900 0.0158

0.262 0.75

kfe v fuε = ε = × = >0.262 0.0158 0.00414 0.004

Vf fΨ = ×
× × × × ×

= =0.85
2 0.165 50 228,000 0.004 256

125
26,195.6 N 26.2 kN

V V V V Vn c s f f= + + ψ = + + = < =52.65 kN 0 26.2 kN 78.85 kN 162 kN O.K.exp

The ACI 440 model significantly underestimates the shear capacity with FRP in 
this case, which is considerably on the conservative side. However, it is important 
to note here that Beam BT5, which is identical to Beam BT4 except for using side 
strips, failed at a much lower capacity (121.5 kN). It is worthwhile to check the 
capacity of BT5 using the ACI440.2R-08 model (Problem 6.5 below) to see if it 
captures a similar drop in shear strength. The reader is referred to a relatively more 
recent analytical model using the truss analogy method for a more in-depth com-
parison with existing models (Colotti, Spadea, and Swamy 2004). The reader is also 
referred to a recent article assessing various design models for shear strengthening 
(Pellegrino and Vasic 2013).

Chapter Problems

Problem 6.1
The beam section in Problem 2.5 is deficient in shear, so strengthen the beam to 
resist enough shear such that it fails in flexure and not shear. The beam is under its 
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own weight in addition to a single concentrated live load at mid-span, as shown in 
Figure 6.P.1.

Use MBrace CF130 CFRP sheets Table 3.6.

Problem 6.2
Repeat Problem 6.1 using NSM CFRP tape (Aslan 500) with the properties shown 
in Figure 6.P.2. Note that the ACI440.2R-08 procedure for shear strengthening has 
been calibrated for FRP sheets and not NSM tape. However, follow the same proce-
dure using NSM tape.

Problem 6.3
Assume that the beam given in Example 15.3 of the ACI440.2R-08 is deficient in shear 
(reinforced with #3 stirrups @ 12" c/c). Strengthen this beam in shear under the upgraded 
loads using the same FRP used in the example for flexural strengthening (Example 15.3 
of ACI 440.0R-08).

f ć = 4 ksi

fy = 60 ksi

P

16 ft

10"

18"

1.5"

7#7

2#7

1.0"

#3 @ 14"
o.c.

FIGURE 6.P.1

Aslan 500
Dimensions: 0.63 in × 0.079 in
ffu = 300 ksi
Ef  = 18000 ksi
εfu = 0.0167

f ć= 4 ksi

fy = 60 ksi

P

16 ft

10"

18"

1.5"

7#7

2#7

1.0"

#3 @ 14"
o.c.

0.63"

0.079"

FIGURE 6.P.2
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Problem 6.4
For the beam in Example 6.1, design the shear strengthening required if wu  = 7 k/ft 
and the existing shear stirrups are #4 @ 10" c/c. See Figure 6.P.3.

f *fu = 550 ksi Ef = 33000 ksitf = 0.0065"
fyt = 50 ksif ć = 4 ksi

28 ft

12"

22"

wu = 7 k/ft

19.75"
dfv =  15.75"

FIGURE 6.P.3

Problem 6.5
Khalifa and Nanni (2000) tested a deficient T-beam in shear (BT5) after strength-
ening it in shear using CFRP sheets. This strengthened beam had no steel stirrups 
and transverse CFRP side strips of 50-mm width at 125 mm on center extending the 
entire web height along the clear span. The geometric and material parameters of the 
beams are given in Figure 6.P.4.

150 mm

380 mm

100 mm

2 φ 28

Beam BT5
2340 mm

P/2 P/2

1070 mm 200 1070 mm

50 mm side strips at 125 mm c/c

2 φ 13

305 mm

FIGURE 6.P.4

f ′c = 35 MPa, fy = 470 MPa for ϕ28-mm bars, and fy = 350 MPa for ϕ13-mm 
and ϕ10-mm bars

CFRP sheet: ffu = 3790 MPa, Ef = 228 GPa, tf = 0.165 mm
Check the ultimate shear capacity of BT5 and compare it with the actual ultimate 

shear strength of 121.5 kN.

Problem 6.6
Al-Sulaimani et al. (1994) tested a reinforced concrete beam (JO) deficient in shear 
and strengthened in shear using GFRP U-jackets covering more than the entire shear 
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spans, as shown in Figure 6.P.5. The experiment indicates that this beam failed in 
flexure at 50.1 kN. Confirm that the shear capacity after strengthening is adequate to 
induce a flexural failure prior to failing in shear. The geometric and material param-
eters of the strengthened beam are given in Figure 6.P.5.

150 mm

37 mm

150 mm
76 mm

37 mm
2 φ 6

3 φ 12 

φ 6 mm@200 mm c/c Beam JO
1200 mm

P/2 P/2

400 mm 400 mm 400 mm

420 mm 420 mm

FIGURE 6.P.5

f ′c = 37.7 MPa,  fy = 450 MPa
GFRP plate: ffu = 200 MPa,  Ef = 15.65 GPa,  εfu = 0.01278,  tf = 3 mm

Problem 6.7
Al-Sulaimani et al. (1994) tested a reinforced concrete beam (WO) deficient in shear 
and strengthened in shear using GFRP side plates covering more than the whole 
shear spans, as shown in Figure 6.P.6. The experiment indicates that this beam failed 
in shear at 42 kN. Compute the shear capacity after strengthening of this beam using 
ACI 440.2R-08 model. The geometric and material parameters of the strengthened 
beam are given in Figure 6.P.6.

150 mm

37 mm

150 mm
76 mm

37 mm
2 φ 6

3 φ 12 

φ 6 mm@200 mm c/c Beam WO

1200 mm

P/2 P/2

400 mm 400 mm 400 mm

420 mm 420 mm120 mm

FIGURE 6.P.6

f ′c = 37.7 MPa,  fy = 450 MPa
GFRP plate: ffu = 200 MPa,  Ef = 15.65 GPa,  εfu = 0.01278,  tf = 3 mm,  hf = 120 mm
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7 Strengthening of Columns 
for Confinement

7.1  OVERVIEW

FRP jackets are used to provide confinement to reinforced concrete columns, which 
improves both the strength and ductility. Confinement using FRP contributes to 
enhanced peak load resistance and enhanced rotation and drift ratio without a sig-
nificant reduction in strength.

7.2  ENHANCEMENT OF PURE AXIAL COMPRESSION

The highest level of strength enhancement is obtained in the case of pure axial com-
pression, as confinement activates a three-dimensional (3-D) state of stress under com-
pression, which yields a higher axial capacity than that of unconfined compression.

FRP jackets are known to offer passive confinement to columns. This means that 
such confinement is not activated until dilation and cracking take place. Accordingly, 
intimate contact between the FRP wrapping and concrete column is important. This 
application is, therefore, called contact-critical application.

As the level of confinement increases, the uniaxial stress–strain behavior along 
the column axis changes from unconfined to lightly confined to a moderately con-
fined softening curve to a heavily confined hardening curve (Figure 7.1).

Confinement of columns is accomplished by orienting the fibers transverse to the 
axis of the column such that it will act in a similar way as that of conventional spiral 
or tie steel reinforcement. The contribution of axially aligned fibers is beyond the 
scope of this chapter.

The peak strength in the axial direction ( f ′cc) is the stress of the concrete section 
corresponding to the peak load after subtracting the contribution of the longitudinal 
steel reinforcement.

For columns with existing spiral steel reinforcement, ACI 440.2R-08 specifies the 
ultimate axial load as

	
( )φ = φ − +P f A A A fn cc g st st y0.85 0.85 	 (7.1)

For columns with existing tie steel reinforcement, ACI 440.2R-08 specifies the 
ultimate axial load as

	
( )φ = φ − +P f A A A fn cc g st st y0.8 0.85 	 (7.2)
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where the strength-reduction factor ϕ = 0.75 for spiral-reinforced members and ϕ = 
0.65 for tie-reinforced members (according to Figure 2.1) for compression-controlled 
sections, f ′cc is the maximum confined concrete strength due to FRP only (as per 
ACI 440.2R-08), Ag is the gross cross-sectional area of concrete, Ast is the area of 
longitudinal steel reinforcement in the column, and fy is the yield strength of the 
longitudinal steel reinforcement.

ACI 440.2R-08 adopted the Lam and Teng (2003a) model, which takes into 
account FRP confinement only. Abd El Fattah (2012) modified the maximum con-
finement pressure ( fl) expression to account for both transverse steel and FRP inside 
the core ( fle) and only FRP in the cover ( flf). The Lam and Teng (2003a) model is 
schematically presented in Figure 7.2.

fćc

f ć

0.003

Ec

1

E2
1

Con�ned Concrete

Uncon�ned Concrete

A
xi

al
 S

tr
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s σ
c

ε t́ε ć εccu
Axial Strain εc

FIGURE 7.2  Lam and Teng (2003a) model for FRP-confined concrete under pure axial 
compression.
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FIGURE 7.1  Stress–strain curves for unconfined and FRP-confined reinforced concrete 
columns.
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7.2.1 L am and Teng Model

The equations that describe the Lam and Teng (2003a) model are given as follows:

	

( )
=

ε −
−

ε ≤ ε ≤ ε

+ ε ε ≤ ε ≤ ε

f
E

E E
f

f E

c

c c
c

c
c c t

c c t c ccu
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02
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2

2

	 (7.3)
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−
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f fcc c

ccu
2 	 (7.4)
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2

	 (7.5)

	 = +Ψ × × κf f fcc c f a l3.3 	 (7.6)

	
=

ε
f

nt E

D
l

f f fe2
	 (7.7)

where Ψf = 0.95 is an additional reduction factor added by ACI 440.2R-08, κa is a 
strength efficiency factor to account for the section geometry (κa = 1.0 for a circular 
section, while its computation for a noncircular section is discussed later in this 
chapter), and εfe = κεεfu = 0.586εfu as averaged by Lam and Teng (2003a). Others 
confirmed this reduction by obtaining κε from experiments in the range of 0.57–0.61 
(Carey and Harries 2005). Pessiki et al. (2001) attributed this strain reduction to 
the multiaxial state of stress that the FRP is subjected to in this application. D is 
the diameter of the circular section or the diagonal of the noncircular section, as 
discussed in Section 7.2.2. According to Lam and Teng (2003a,b), the minimum 
confinement ratio ( fl/f ′c) should exceed 0.07 in order for the confined axial stress–
strain diagram of circular columns to have an ascending second branch, as seen in 
Figure 7.2. For noncircular sections, the ratio ( fl/f ′c) is multiplied by (κa) with the 
product to exceed 0.07 in order to have an ascending second branch. On the other 
hand, ACI 440.2R-08 increased this minimum limit to 0.08 to guarantee the out-
come of an ascending curve only while equally applying ( fl/f ′c) to circular and non-
circular sections. Abd El Fattah (2012) allowed this ratio ( fl/f ′c) to drop below 0.08, in 
which case a descending branch of the stress–strain curve is accounted for by using 
a Mander constitutive model (Mander et al. 1988). The ultimate axial column strain 
is found by the empirical formula suggested by ACI 440.2R-08.

	

ε = ε + κ
ε
ε

f
f

ccu c b
l

c

fe

c

1.50 12
0.45

	 (7.8)

	 ε ≤ccu 0.01 	 (7.9)

where κb is a strain efficiency factor to account for the section geometry (κb = 1.0 for 
a circular section, while its computation for a noncircular section is discussed later). 
The maximum axial compressive strain (εccu) is limited by ACI 440.2R-08 to a value 
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of 0.01, as shown in Equation (7.9), to prevent excessive cracking and possible loss of 
concrete integrity. ACI 440.2R-08 also limits this strength improvement technique 
to concrete having f ′c less than 10 ksi (69 MPa) due to the lack of experimental stud-
ies with concrete of higher values. It is important to state here that in the case where 
εccu is controlled by Equation (7.9), the slope of the second hardening line (E2) in 
Equation (7.4) will be kept constant, and the value of ( f ′cc) will be reduced accord-
ingly (ACI 440.2R-08).

7.2.2  Consideration of Rectangular Sections

ACI 440.2R-08 confirmed the findings of several researchers that confining square 
and rectangular columns with FRP jackets may provide a marginal increase in 
the maximum confined axial compressive strength ( f ′cc). The provisions of ACI 
440.2R-08 ignore the contribution of conventional steel transverse reinforcement 
in confining the columns, and they limit this application to columns having h/b 
aspect ratio less than or equal to 2.0, with both h and b less than 36 in. (914 mm). 
ACI 440.2R-08 adopts the theoretical model proposed by Lam and Teng (2003b) that 
accounts for the reduced area of the confined rectangular column. The rectangular 
section is converted into an equivalent circular section for the purpose of calculat-
ing the maximum confining pressure ( fl) using Equation (7.7), with the diameter D 
replaced to be the diagonal of the rectangular section (Figure 7.3).

	
2 2= +D b h 	 (7.10)

To determine the area of the cross section that is effectively confined by the FRP 
jacket, four parabolas are drawn inside the rectangular section to isolate the inner 
confined area from the outer unconfined area. The parameters controlling the sizes 
of the parabolas are the column dimensions (b, h); the radius of the corners of the 

b
D

h

rc

FIGURE 7.3  Effective area of confined rectangular section per ACI 440.2R-08. (Courtesy 
of Lam and Teng [2003b].)
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column (rc), which is necessary to introduce to the column to provide some mean-
ingful confinement effect; and the longitudinal steel reinforcement ratio (ρs). It can 
be easily shown that the effective area to concrete area ratio (Ae/Ac) is found to be
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	 (7.11)

The strength and strain efficiency factors (κa, κb) are functions of the effective 
area of confined rectangular section (Ae), determined from Equation (7.11), and the 
column aspect ratio (b/h) as postulated by Lam and Teng (2003b). The respective 
expressions of these variables are given by Equations (7.12) and (7.13):
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7.2.3 � Combined Confinement of FRP and Transverse 
Steel in Circular Sections

The fl expression given by Equation (7.7) is updated by Abd El Fattah (2012) to 
account for the contribution of FRP and transverse steel in confining the core:

	
=

ε
+

×
f

nt E

D

k A f

d S
le

f f fe e sp yh

c

2 2
	 (7.14)
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 for circular hoop 

transverse steel, s′ is the clear spacing of hoops or clear pitch of spiral, dc is the 

diameter of concrete core c/c, and ρcc is the ratio of longitudinal reinforcement area 
to the area of core.

Similarly, the fl expression that confines the cover of the column only is deter-
mined by

	
=

ε
f

nt E

D
lf

f f fe2
	 (7.15)

The values of the ultimate confined strength of the core and cover ( f ′cce and 
f ′ccf) are determined from Equation (7.6) by substituting fle and flf, respectively. 
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Accordingly, the ultimate confined concrete axial load, replacing that of Equation 
(7.1), is

	
( )φ = φ − + − +P f A A f A A A fn cce c st ccf g c st y0.85 0.85 0.85 ( ) 	 (7.16)

For the combined confinement effect when f flf c/  is greater than 0.08, the Lam 
and Teng (2003a) model described in Section 7.2.1 is used with the proper   f ′cce and 
f ′ccf for the core and the cover, respectively. In this case, the ultimate compressive 
strain (εccu) is assumed to be different in the core and cover, which is determined by 
substituting flf or fle for fl in Equation (7.8). Accordingly, the slope (E2e) of the core 
will also be different from the slope of the cover (E2f). On the other hand, when 
f flf c/  is less than 0.08, the Mander model described in Mander, Priestley, and Park 
(1988) is used with the proper f ′cce and f ′ccf for the core and the cover, respectively. The 
minimum ultimate compressive strain (εccu )—between that of Equations (7.8) and 
(7.9) using flf for the case of FRP and that of the energy approach corresponding to 
the fracture of the first hoop (Mander et al. 1988) for the case of transverse steel—is 
selected. So in this case, the peaks of the curves for the core and cover take place 
at different strains (ε′cce and ε′ccf) corresponding to the different strength values for 
the core and the cover (  f ′cce and f ′ccf), and the ultimate strain (εccu) is also different for 
both the core and the cover. This procedure has been programmed into the software 
“KDOT Column Expert” developed by the author and coworkers and described in 
two references (Abd El Fattah 2012; Rasheed et al. 2012).

7.2.4 � Combined Confinement of FRP and Transverse 
Steel in Rectangular Sections

The fl expression given by Equation (7.7) is replaced with the two lateral pressures 
along the x- and y-axes as formulated by Al-Rahmani and Rasheed (2014) to account 
for the contribution of FRP and transverse steel in confining the core and the cover 
in the x- and y-directions, as seen in Figure 7.4.

	

=
ε

+ ρf k
nt E

h
k flxe e

f f fe
e x yh

2
	 (7.17)
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flxf h
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FIGURE 7.4  Effective horizontal pressure of confined rectangular section. (Courtesy of 
Al-Rahmani and Rasheed [2014].)
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2 	 (7.18)

	
=

ε
f k

nt E

h
lxf e

f f fe2 	 (7.19)

	
=

ε
f k

nt E

b
lyf e

f f fe2 	 (7.20)
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A
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e
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 from Equation (7.11), 
( )( )
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 for rectan-

gular tied transverse steel, ρ = ρ =× ×x
A

h s y
A

b s
tie

c
tie

c
,2 2  for rectangular tie transverse steel, s is 

the c/c spacing of ties, hc and bc are the height and width of concrete core c/c, and ρcc 
is the ratio of longitudinal reinforcement area to the area of core (Mander et al. 1988).

The values of the ultimate confined strength of the core and cover ( f ′cce, and f ′ccf) 
are determined based on the 3-D state of stress of concrete plasticity proposed by 
Willam and Warnke (1975) and explained below by substituting flxe and flye as lateral 
core pressures and ( flxf and flyf ) as lateral cover pressures, respectively. Accordingly, 
the ultimate confined concrete axial load replacing that of Equation (7.2) is

	
0.8 0.85 0.85 ( )( )φ = φ − + − +P f A A f A A A fn cce c st ccf g c st y 	 (7.21)

In selecting whether to use Lam and Teng’s ascending model or Mander’s 
descending model, flf of the equivalent circular column described in Section 7.2.2 
and substituted into Equation (7.7) will be computed. If f flf c/  is greater than 0.08, 
Lam and Teng’s ascending model described in Section 7.2.1 is used, with the 
proper f ′cce, and f ′ccf for the core and the cover determined using the 3-D state-of-
stress concrete plasticity model (Willam and Warnke 1975) explained in Section 
7.2.5. In this case, the ultimate compressive strain (εccu) is assumed to be different 
in the core and cover, determined by substituting fle and flf for fl in Equation (7.8), 
respectively. Accordingly, the slope (E2e) of the core will be higher than the slope 
of the cover (E2f).

On the other hand, when f flf c/  is less than 0.08, Mander’s model (Mander et al. 
1988) is used with the proper ( f ′cce, and f ′ccf) for the core and the cover determined 
using the 3-D state-of-stress concrete plasticity model (Willam and Warnke 1975) 
explained in section 7.25. The ultimate compressive strains εccue and εccuf for the core 
and the cover are selected. εccuf  is taken from Equations (7.8) and (7.9) using fif for 
the case of the cover and εccue is taken from the energy approach corresponding to the 
fracture of the first hoop (Mander et al. 1988) for the case of the core. The peak of the 
curve also takes place at different strains ε′cce, and ε′ccf corresponding to f ′cce, and f ′ccf, 
with different strength values for the core and the covers. This procedure has been 
programmed into the software “KDOT Column Expert” developed by the author and 
coworkers and described by Al-Rahmani and Rasheed (2014).
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7.2.5  3-D State of Stress Concrete Plasticity Model

Mander (1983) proposed using a multiaxial stress procedure to calculate the ultimate 
confined strength (e.g., f ′cce) from two given lateral pressures (e.g., flxe and flye). This 
numerical procedure is summarized in the following steps:

	 1.	Determine flxe and flye using Equations (7.17) and (7.18)
	 2.	Convert the positive sign of flxe and flye to negative to represent the major and 

intermediate principal stresses (these values are referred to as σ1 and σ2 so 
that σ1 > σ2)

	 3.	Estimate the confined strength f ′cce, which is σ3 as the minor principal stress
	 4.	Calculate the octahedral stress σoct, octahedral shear stress τoct, and lode 

angle θ as follows:

	
( )σ = σ + σ + σoct

1
3

1 2 3 	 (7.22)

	
( ) ( )( )τ = σ − σ + σ − σ + σ − σoct

1
3

1 2
2

2 3
2

3 1
2

1
2 	 (7.23)

	

oct

oct

cos
2

1θ =
σ − σ

τ
	 (7.24)

	 5.	Determining the ultimate strength meridian surfaces T and C (for θ = 0° 
and 60°, respectively) using the following equations derived by Al-Rahmani 
and Rasheed (2014) from data by Kupfer, Hilsdorf and Rüsch (1969) while 
calibrating the data against the equivalent circular section of Lam and Teng 
(2003b):

	

=
− σ σ > −

− σ σ ≤ −

0.061898 0.62637 if 0.767

0.229132 0.40824 if 0.767
T

oct oct

oct oct 	
(7.25)

	

=
− σ σ > −

− σ σ ≤ −

0.107795 1.09083 if 0.333

0.336883 0.40357 if 0.333
C

oct oct

oct oct

	 (7.26)

	
σ = σ foct oct c/ 	 (7.27)

	 6.	Determining the octahedral shear stress using the interpolation function 
found by Willam and Warnke (1975):

	

0.5 / cos 2 5 4

2
oct

2
1
2

2

( )
( )

τ =
θ + − + −

+ −
C

D T C D T TC

D T C
	 (7.28)
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4 cos2 2 2( )= − θD C T 	 (7.29)

	 τ = τ foct oct c 	 (7.30)

	 7.	Recalculating ( f ′cce) using the following equation (same as Equation [7.23], 
but solving for σ3):

	
( )σ =

σ + σ
− τ − σ − σoct

2
4.5 0.753

1 2 2
1 2

2 	 (7.31)

	 8.	 If the value from Equation (7.31) matches that of the assumed initial value, 
then convergence is achieved. Otherwise, the value from Equation (7.31) is 
set as the initial value and steps 4 through 8 are repeated until convergence 
is accomplished.

An Excel spreadsheet program automating this procedure may be obtained 
electronically from the author.

7.3 � ENHANCEMENT UNDER COMBINED AXIAL 
COMPRESSION AND BENDING MOMENT

It has been shown by experiments (Chaallal and Shahawy 2000; Memon and Sheikh 
2005; Darby et al. 2011) and by computations (ACI 440.2R-08) that the use of FRP 
wrapping of circular, square, and slightly rectangular columns provides strength 
improvement under the effect of axial compression and bending moment. To estab-
lish a procedure accounting for FRP confinement effects on the strength improve-
ment in wrapped columns, ACI 440.2R-08 takes the following considerations in 
constructing the P-M interaction diagram:

	 1.	The equations of Section 7.2.1 and 7.2.2 are applicable to finding the pure 
compression point (Point A), see Figure 7.5.

	 2.	The effective hoop FRP strain in the jacket for diagram points other than pure 
axial compression needs to assume a value of 0.004 in the compression-con-
trolled region of the curve to ensure shear integrity of confined concrete. The 
ACI 440.2R-08 guide allows finding two more points to draw the compres-
sion-controlled region when establishing the interaction diagram, as seen in 
Figure 7.5:

	 a.	 Point B with a strain distribution corresponding to a compressive strain 
of ε′ccu at the extreme compression fiber and zero strain at the extreme 
layer of tensile steel reinforcement

	 b.	 Point C with a strain distribution corresponding to a compressive strain 
of ε′ccu at the extreme compression fiber and yielding tensile strain εsy at 
the extreme layer of tensile steel reinforcement (balanced failure)

	 c.	 Connecting Points A, B, and C with straight lines to construct the 
enhanced compression-controlled region.
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	 d.	 Connecting Point C and the pure bending point with a straight line 
indicating no strength enhancement in the tension-controlled region.

	 3.	Drawing the interaction diagram reduced by the relevant resistance (ϕ) fac-
tors per ACI 318-11 (2011) for circular and rectangular cross sections.

	 4.	Using Equations (7.1) and (7.2) to cap the reduced interaction diagram when 
the eccentricity is less than or equal to 0.1 h.

7.3.1 I nteraction Diagrams for Circular Columns

Since the derivation of the force and moment equations for points B and C requires 
the integration of some involved integrands with trigonometric functions due to the 
continuous variation of the section width, these expressions will be evaluated numer-
ically by dividing the cross section into 100 layers parallel to the centroidal x-axis. 
The addition of the longitudinal steel bar contribution will have to be accounted for 
numerically anyway. Accordingly, the formulation of this procedure is incorporated 
into an Excel spreadsheet as follows.

7.3.1.1  Contribution of Concrete
The following computation steps are taken in general:

	 1.	The thickness of each layer is

	
=t

D
lr

100
	 (7.32)
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FIGURE 7.5  Simplified interaction diagrams for FRP-confined concrete circular column.
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	 2.	The depth of each layer measured from the top extreme fiber is

	
= = + =

−
×d

t
d

t
t d

i
tlr

lr
lr

lr
lr lri lr

2
,

2
,

2 1
2

1 2 	 (7.33)

	 3.	The angle of each layer measured from the vertical axis is

	
θ =

−D d

D
lri

lricos
/2

/2
	 (7.34)

	 4.	The width of each layer (i) is

	
= × θb Dlri lrisin 	 (7.35)

	 5.	The depth of the neutral axis (c) measured from the top extreme fiber is

	 c = d for point B	 (7.36)

	 =
ε

ε + ε
c d ccu

ccu sy

 for point C	 (7.37)

	 6.	The depth of the transition point (dt) measured from the top extreme fiber is

	
= − = −

ε
ε

d c y ct t
t

ccu

1 	 (7.38)

		  where εt  is computed from Equation (7.5).
	 7.	 If <d dlri t , use Equation (7.3b); otherwise, use Equation (7.3a), with

	
ε =

−
ε

c d

c
ci

lri
ccu 	 (7.39)

		  and fci from Equation (7.3).
	 8.	The axial force (Pcn) and the bending moment (Mcn) contribution of con-

crete are

	

∑

∑

=

= × −

P f b t

M f b t
D

d

cn ci

i

lri lr

cn ci

i

lri lr lri
2

	 (7.40)
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It is important to mention here that f ′cc and ε′ccu for points B and C are deter-
mined from Equations (7.6), (7.8), and (7.9) by computing fl in Equation (7.7) using 
εfe = 0.004 instead of κεεfu used for pure axial compression.

7.3.1.2  Contribution of Steel
The following computation steps are taken in general:

	 1.	The angle between each two consecutive bars is

	
θ =bar

360
No. of bars

	 (7.41)

	 2.	The radius of bars is

	
= − − −R

D
d

d
bar spiral

bar

2
clear cover

2
	 (7.42)

	 3.	The depth of each bar measured from the top extreme fiber is

	
= + − × θd

D
R jbarj bar bar

2
cos( 1)_ 	 (7.43)

Note that the first bar is placed on the vertical axis on the tension side of the sec-
tion (bottom side).
	 4.	The strain and stress in the steel bar is

	

ε =
−

ε

= ε ≤

c d

c

f E f

sj
barj

ccu

sj s sj y

_

	 (7.44)

		  and fcj from Equation (7.3) by substituting εsj for εc.
	 5.	The axial force (Psn) and the bending moment (Msn) contribution of steel are

	

∑

∑

= − ×

= − × × −

P f f A

M f f A
D

d
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s bar
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, _ 	 (7.45)

The axial force and bending moment capacity of the section is the simple sum of 
the contribution of concrete and steel:

	

c s

c s

= +

= +

P P P

M M M

n n n

n n n

	 (7.46)



181Strengthening of Columns for Confinement

7.3.2 �I nteraction Diagrams for Circular Columns 
Using KDOT Column Expert

As shown in the previous section, the effective confining pressure ( fl) in the case of 
the two eccentric points (Point B and Point C) is lower than that of pure axial com-
pression (Point A), where the section is fully confined. In KDOT Column Expert 
software, this issue of partial confinement is modeled more consistently throughout 
the range of eccentricities. While the case of pure axial compression has zero eccen-
tricity and full confinement, the pure bending case has infinite eccentricity and no 
confinement at all. The confined strength in between the two extremes ( f ′cc and f ′c) is 
mapped gradually as a function of the eccentricity:

	

=
+

+
+

f e
D

f D
e

fcc cc c
1

1

1

1 	 (7.47)

where fcc  is the eccentric confined strength at eccentricity (e/D), and the equation 
satisfies the two extremes ( f ′cc and f ′c). Figure 7.6 illustrates three different sections 
under concentric load, a combination of axial load and bending moment, and pure 
bending moment: The highlighted fiber in the three cases has the same strain. 
However, the size of the compression zone does play an important role in predicting 
the stress, which is different in the three cases of Figure 7.6. Hence, it is more realis-
tic to relate the eccentric strength and ductility to the level of confinement utilization 
and compression zone size represented in circular columns by the eccentricity, as 
seen in Figure 7.7.

7.3.2.1  Eccentric Model Based on Lam and Teng Equations
The ultimate eccentric or partially confined strength fcc  is determined from 
Equation (7.47) and is paired with the ultimate eccentric or partially confined strain 

FIGURE 7.6  Effect of compression zone size or eccentricity on concrete strength.
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εcu  to construct a Lam and Teng eccentric curve. The strain εcu  is found by linear 
interpolation between the two extreme bounds of strain, as seen in Figure 7.8:

	
( )ε =

−
−

ε − +
f f
f f

cu
cc c

cc c
ccu 0.003 0.003 	 (7.48)

Any point on the generated eccentric curves can be calculated using the follow-
ing equations:
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= ε −
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E E

f
c c c
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c
c c t

4
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2
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2 	 (7.49)

	
= + ε ε ≤ ε ≤ εf f Ec c c t c cufor2 	 (7.50)
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FIGURE 7.7  The relationship between the normalized compression zone size and eccen-
tricity in circular columns. (Courtesy of Abd El Fattah [2012].)
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f ćc
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2 	 (7.51)
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E E
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	 (7.52)

7.3.2.2  Eccentric Model Based on Mander Equations
The ultimate eccentric or partially confined strength fcc  is determined from 
Equation (7.47) and is paired with the corresponding strain εcc  to construct a 
Mander eccentric curve. The corresponding strain εcc  is given by

	

ε = ε + −
f

f
cc co

cc

c

1 5 1 	 (7.53)

and the ultimate strain εcu  corresponding to a specific eccentricity will be deter-
mined from a linear function between the ultimate point of the fully confined con-
crete ( fcu, εcu) and the ultimate point of unconfined concrete fcu0, εcu0 = 0.003, as seen 
in Figure 7.9.
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FIGURE 7.9  Eccentricity-based confined Mander model.
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Any point on the generated eccentric curve can be calculated using the follow-
ing equation:

	
f

f x r

r x
c

cc
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− +
	 (7.57)
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7.3.2.3  Eccentric-Based Model Selection
Eccentric-based model selection depends on the ratio of ( flf/f ′c) for a concentrically 
loaded column. If this ratio ( flf/f ′c) > 0.08, the Lam and Teng eccentric model is used 
in the analysis. If the ratio ( flf/f ′c) < 0.08, the Mander eccentric model is used in the 
analysis, as seen in Figure 7.10. Accordingly, KDOT Column Expert allows the case 
of a descending curve to be analyzed.

FRP wrapped column: diameter,
thickness,

Concrete properties, Steel properties
FRP properties

Eccentric Based model (Lam
and Teng Equations) is used

Eccentric Based model
(Mander Equations) is used

Calculate fi

Calculate fif/f ć

Yes
fif/f ć > 0.08

No

FIGURE 7.10  Eccentric model implementation strategy. (Courtesy of Abd El Fattah [2012].)
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7.3.2.4  Numerical Procedure
The column cross section is divided into a finite number of thin layers, as seen in 
Figure 7.11. The force and moment of each layer is calculated and stored. The bars 
are treated as discrete objects in their actual locations. The advantage of that is to 
precisely calculate the internal forces induced by steel bars and concrete layers in the 
column cross section. The cross section analyzed is loaded incrementally by main-
taining a certain eccentricity between the axial force P and the resultant moment MR. 
Since increasing the load and resultant moment causes the neutral axis and centroid 
to vary nonlinearly, the generalized moment-of-area theorem is devised. The method 
is developed using an incremental iterative analysis algorithm, a secant stiffness 
approach, and proportional or radial loading. It is explained in the following steps:

	 1.	Calculate the initial section properties.
Elastic axial rigidity, EA:

	
∑ ∑= + −EA E w t E E Ac

i

i i s c si

i

( ) 	 (7.61)

		  where Ec = initial modulus of elasticity of the concrete and Es = initial 
modulus of elasticity of the steel bar.

The depth of the elastic centroid position from the bottom fiber of the section Yc:

	

∑∑
=

− + − −

Y

E w t H Y E E A H Y

EA
c

c i i i s c si si

ii

( ) ( ) ( )

	 (7.62)

Elastic flexural rigidity about the elastic centroid, EI:

	

EI E w t H Y Y E E A H Y Yc

i

i i i c s
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c si si c( ) ( ) ( )2 2∑ ∑= − − + − − − 	 (7.63)
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FIGURE 7.11  Using finite-layer approach in analysis.
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	 2.	Calculate f flf c/  and check the ratio to decide which model is used (eccen-
tric model based on Lam and Teng equations or eccentric model based on 
Mander equations), as seen in Figure 7.10.

	 3.	Define eccentricity e, which specifies the radial path of loading on the inter-
action diagram, as seen in Figure 7.12.

	 4.	Define loading step ΔGP as a small portion of the maximum load and com-
pute the axial force at the geometric centroid:

	 = +new oldGP GP GP 	 (7.64)

	 5.	Calculate moment GM about the geometric centroid:

	
e e

GM
GP

and GM GP= = × 	 (7.65)

	 6.	Transfer moment to the updated inelastic centroid and calculate the new 
transferred moment TM, as seen in Figure 7.13:

	 Y YG cTM GM GP( )= + − 	 (7.66)

		  The advantage of transferring the moment to the position of the inelastic 
centroid is to eliminate the coupling effect between the force and moment, 
since EAM = 0 about the inelastic centroid (Rasheed and Dinno 1994):

	

=
ε
φ

GP
TM

EA 0
0 EI

0

	 (7.67)
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FIGURE 7.12  Radial loading concept.
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	 7.	Find the curvature ϕ:

	

TM
EI

φ = 	 (7.68)

		  Strain at the inelastic centroid ε0, the extreme compression fiber strain 
εec, and strain at the extreme level of steel in tension εes are found as follows:

	

GP
EA

0ε = 	 (7.69)

	 H Yec c( )0ε = ε + φ − 	 (7.70)

	 Yes c( cover)0ε = ε − φ − 	 (7.71)

		  where cover is up to the center of the bars.

	 8.	Calculate strain εci and corresponding stress fci in each layer of concrete 
section by using the selected model from step 2:

	 Yci ec iε = ε − φ 	 (7.72)

	 9.	Calculate strain εsi and corresponding stress fsi in each bar in the given sec-
tion by using the steel model (elastic up to yield strength and then perfectly 
plastic):

	 ε = ε − φYsi ec si 	 (7.73)
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FIGURE 7.13  Transferring moment from geometric centroid to inelastic centroid.
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	 10.	Calculating the new section properties: axial rigidity EA, flexural rigidity 
about the inelastic centroid EI, moment of axial rigidity about inelastic cen-
troid EAM, internal axial force Fz, and internal bending moments about the 
inelastic centroid M0,

	
∑ ∑= + −EA E w t E E Aci

i

i i si ci si

i

( ) 	 (7.74)

	

EAM E w t H Y Y E E A H Y Yci
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c i si ci si

i

c si 	 (7.78)

	 where

		  Eci = secant modulus of elasticity of the concrete layer = 
ε
fci

ci
		  Esi = secant modulus of elasticity of the steel bar = 

ε
fsi

si

	 11.	Transferring back the internal moment about the geometric centroid

	
GM M GP Y YG c( )0 0= − − 	 (7.79)

	 12.	Checking the convergence of the inelastic centroid

	
=

×
TOL

EAM

EA Yc 	 (7.80)

	 13.	Comparing the internal force to applied force, internal moments to applied 
moments, and ensuring that the moments are calculated about the geomet-
ric centroid

	 − ≤ × −GP Fz 1 10 5 	 (7.81)

	 GM GM 1 100
5− ≤ × − 	 (7.82)

	 ≤ × −1 10 5Tol 	 (7.83)
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		  If Equations (7.81), (7.82), and (7.83) are not satisfied, the location of the 
inelastic centroid is updated by EAM/EA, and steps 5 to 11 are repeated 
until Equations (7.81), (7.82), and (7.83) are satisfied.

	
Y Y

EAM

EA
c cnew old= + 	 (7.84)

		  Once equilibrium is reached, the algorithm checks for ultimate strain in 
concrete εec and steel εes not to exceed εcu  and 0.05, respectively, and then 
it increases the loading by ΔGP and runs the analysis for the new load level 
using the latest section properties. Otherwise, if εec equals εcu  or εes equals 
0.05, the target force and resultant moment are reached as a point on the 
interaction diagram for the amount of eccentricity used. For more details 
about this procedure, check the work of Rasheed and Dinno (1994) and Abd 
El Fattah, Rasheed, and Esmaeily (2011).

Example 7.1: Analysis

One of the columns that were tested by Eid, Roy, and Paultre (2009) is investigated 
in this example. The following are the properties of the column:

Diameter 11.9 in. 303 mm
Clear cover 1 in. 25 mm
f ′c 4.59 ksi 31.7 MPa
n × tf 2 × 0.015 in. 2 × 0.381 mm
Ef 11,306 ksi 78,000 MPa
εfu 0.013 0.013
fyt 66.1 ksi 456 MPa
Hoop spacing 3.94 in. 100 mm
Hoop diameter #3 9.5 mm
Longitudinal bars 6 #5 6 ϕ 15.9 mm
fy 61.3 ksi 423 MPa

Draw the interaction diagram per ACI 440.2R-08 then use KDOT Column 
Expert.

Solution:

Using Equation (7.7):

=
ε

=
× × × × ×

=f
nt E

D
l

f f fe2 2 2 0.015 11306 0.586 0.013
11.9

0.4343ksi

= = >
f
f
l

c

0.4343
4.59

0.095 0.08, stress–strain curve is ascending
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Point A:
		  According to Equation (7.6)

= + × × × =fcc 4.59 0.95 3.3 1 0.4343 5.95ksi

ε = × + × × ×
×

=ccu 0.002 1.5 12 1 0.095
0.586 0.013

0.002
0.007162

0.45

		  Following Equation (7.1) with and without ϕ factors

= × × × − × + × × =Pn 0.85 5.95
π
4

11.9 6 0.31 61.3 6 0.31 667.1kips2

φ = × × =Pn 0.75 0.85 667.1 425.3 kips

Point B:

=
ε

=
× × × ×

=f
nt E

D
l

f f fe2 2 2 0.015 11,306 0.004
11.9

0.228 ksi

		  This fl will not be used to determine whether the stress–strain curve is 
ascending or descending, since it is computed for eccentric points.

= + × × × =fcc 4.59 0.95 3.3 1 0.228 5.3 ksi

= = ε =E Ec t3861.7 ksi, 154.44 ksi, 0.0024762

ccu 0.002 1.5 12 1 0.0497
0.004
0.002

0.004629
0.45

ε = × + × × × =

= =P Mn B n B483.14 kips, 53.13 kip-ft, ,

Point C:

= =P Mn C n C286.86 kips, 78.75 kip-ft, ,

Point D:

= =P Mn D n D0 kips, 38.54 kip-ft, ,

Figure 7.14 presents the approximate interaction diagram computed according 
to ACI 440.2R-08 procedure along with the value of the experimental point. It is 
evident that the interaction diagram in Figure 7.14 is conservative with respect to 
the experimental point.

On the other hand, Figure 7.15 depicts the interaction diagram according to the 
KDOT Column Expert software. It is evident that the latter is in good agreement 
with the experimental point. Also, it is clear that the interaction diagram com-
puted according to ACI 440.2R-08 is conservative with respect to that of KDOT 
Column Expert in the overall sense. This should be expected to happen, since the 
ACI440.2R-08 procedure accounts for FRP wrapping only and ignores the confine-
ment provided by the internal steel.
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Example 7.2: Analysis

One of the columns that were tested by Saadatmanesh, Ehsani, and Jin (1996) is 
investigated in this example. The following are the properties of the column:

Diameter 12 in. 305 mm
Clear cover 1 in. 25 mm
f ′c 5 ksi 34.5 MPa
n × tf 6 × 0.03 in. 6 × 0.762 mm
Ef 2,696 ksi 18,600 MPa
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FIGURE 7.14  Confined interaction diagram according to ACI 440.2R-08 for column tested 
by Eid, Roy, and Paultre (2009).
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FIGURE 7.15  Confined interaction diagram according to KDOT Column Expert for col-
umn tested by Eid, Roy, and Paultre (2009).



192 Strengthening Design of Reinforced Concrete with FRP

εfu 0.029 0.029
fyt 89 ksi 614 MPa
Hoop spacing 3.5 in. 88.9 mm
Hoop diameter #3 9.5 mm
Longitudinal bars 14#4 14 ϕ 12.7 mm
fy 65 ksi 448 MPa

Draw the interaction diagram per ACI 440.2R-08 then use KDOT Column Expert.

Solution:

Using Equation (7.7):

=
ε

=
× × × × ×

=f
nt E

D
l

f f fe2 2 6 0.03 2696 0.586 0.029
12

1.3745 ksi

= = >
f
f
l

c

1.3745
5

0.275 0.08, stress–strain curve is ascending

Point A:
		  According to Equation (7.6),

= + × × × =fcc 5 0.95 3.3 1 1.3745 9.31ksi

ε = × + × × ×
×

= >

ε =

ccu

ccu new

0.002 1.5 12 1 0.275
0.586 0.029

0.002
0.0203 0.01

0.01

0.45

_

		  Recalculate f ′cc based on the original E2 and the new εccu.

=
−

ε
=

−
=

= + ε = + × =

E
f f

f f E

cc c

ccu

cc new c ccu new

9.31 5
0.0203

212.315 ksi

5 (212.315 0.01) 7.123 ksi

2

_ 2 _

		  Following Equation (7.1) with and without ϕ factors,

= × × × − × + × × =Pn 0.85 7.123
π
4

12 14 0.20 65 14 0.20 849.8 kips2

φ = × × =Pn 0.75 0.85 849.8 541.75 kips

Point B:

=
ε

=
× × × ×

=f
nt E

D
l

f f fe2 2 6 0.03 2696 0.004
12

0.3235 ksi

		  This fl will not be used to determine whether the stress–strain curve is 
ascending or descending, since it is computed for eccentric points.

= + × × × =fcc 5 0.95 3.3 1 0.3235 6.014 ksi

= = ε =E Ec t4030.51ksi, 198.042 ksi, 0.0026092

ε = × + × × × =ccu 0.002 1.5 12 1 0.0647
0.004
0.002

0.005121
0.45
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= =P Mn B n B591.085kips, 64.49 kip-ft, ,

Point C:

= =P Mn C n C343.01kips, 99.79 kip-ft, ,

Point D:

= =P Mn D n D0 kips, 59.036 kip-ft, ,

By comparing Figures  7.16 and 7.17, it is evident that the interaction diagram 
according to ACI 440.2R-08 is conservative with respect to that of KDOT Column 
Expert, especially in the compression-controlled region where confinement is 
especially critical. This is attributed to ignoring the confinement by internal steel 
in ACI 440.2R-08 while it is considered by KDOT Column Expert.
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FIGURE 7.16  Confined interaction diagram according to ACI 440.2R-08 for column tested 
by Saadatmanesh, Ehsani, and Jin (1996).
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FIGURE 7.17  Confined interaction diagram according to KDOT Column Expert for col-
umn tested by Saadatmanesh, Ehsani, and Jin (1996).
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7.3.3 I nteraction Diagrams for Rectangular Columns

Since the derivation of the concrete contribution of force and moment equations 
for points B and C requires the integration of simpler integrands with a constant 
section width, these expressions will be evaluated analytically in closed form by 
integrating the stress–strain expressions perpendicular to the centroidal x-axis. 
The addition of the longitudinal steel bar contribution will have to be accounted 
for numerically anyway. However, the steel bar contribution is also easy enough 
to consider by hand.

7.3.3.1  Contribution of Concrete
Determining the pure axial compression point A is straightforward. To develop the 
equations for determining points B and C on the interaction diagram, the following 
expressions are derived in closed form:

	

∫∫ ∫ ( )( ) ( )( )

( )
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−
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−
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while the section curvature φ =
ε
c

s
ccu , the Pcn expression may be written as
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− + + εP b
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		  (7.85)

Similarly, the expression for Mn can be derived as follows:

∫ ∫

∫ ∫[ ]( )

= + − − = + −
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while the section curvature φ =
ε
c

s
ccu , the Mcn expression may be written as
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	 (7.86)

as stated earlier, when the circular section was discussed in Section 7.3.1.1:

	 c = d  for point B	 (7.87)

	
=

ε
ε + ε

c d ccu

ccu sy

  for point C	 (7.88)

	
=

ε
ε

y ct
t

ccu

	 (7.89)
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7.3.3.2  Contribution of Steel
The following computation steps are taken in general:

	 1.	The depth of each bar layer measured from the top extreme fiber is

	

= + +

= + − ×
−

−

d d
d

d d j
d d

bar tie
bar

barj bar
bar

clear cover
2

( 1)
No. of layers 1

_ ,1

_ _ ,1
_ ,1 	 (7.90)

	 2.	The strain and stress in the steel bar layer j is

	

c d

c

f E f

f

sj
barj

ccu

sj s sj y

cj sj cis obtained from Equation (7.3) by substituting for .

_ε =
−

ε

= ε ≤

ε ε 	 (7.91)

	 3.	The axial force (Psn) and the bending moment (Msn) contribution of steel are

	

∑

∑

= − ×

= − × × −

P f f A

M f f A
h

d

sn sj cj

j

s barj

sn sj cj

j

s barj barj

( )

( )
2

,

, _ 	 (7.92)

		  The axial force and bending moment capacity of the section is the 
simple sum of the contribution of concrete and steel:

	

= +

= +

P P P

M M M

n cn sn

n cn sn

	 (7.93)

7.3.4 �I nteraction Diagrams for Rectangular 
Columns Using KDOT Column Expert

As shown in the previous section, the effective confining pressure ( fl) in the case 
of the two eccentric points (Point B and Point C) is lower than that of pure axial 
compression (Point A), where the section is fully confined. In KDOT Column 
Expert software, this issue of partial confinement is modeled more consistently 
throughout the range of eccentricities that are correlated to the ratio of the com-
pression zone to the entire section. While the case of pure axial compression 
has zero eccentricity and full confinement, the pure bending case has infinite 
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eccentricity and no confinement at all. The confined strength in between the two 
extremes ( f ′cc and f ′c) is mapped gradually as a function of the compression-zone 
ratio (CR).

	

=
+

−

+
+

f

CR

f
CR

fcc cc c
1

1
1

0.2

1
0.8 	 (7.94)

where

	

=
+

CR

e

bh
e

bh

0.2 0.1
	 (7.95)

The relationship in Equation (7.95) has been correlated by plotting the nor-
malized eccentricity against the compression area to cross-sectional area ratio for 
rectangular cross sections having different aspect ratios at the unconfined failure 
level. The aspect ratios used are 1:1, 2:1, 3:1, and 4:1, as shown in Figure  7.18, 
selected as an example. Each curve in Figure 7.18 represents specific α angle (tan 
α = My/Mx) ranging from zero to 90°. It is seen from this figure that there is an 
inversely proportional relation between the normalized eccentricity and compres-
sion-zone ratio, regardless of the α angle followed. By plotting the curves from all 
aspect ratios into one graph and establishing the best-fit curve, Equation (7.95) is 
introduced.
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FIGURE 7.18  Compression-zone ratio vs. normalized eccentricity in rectangular columns 
(aspect ratio = 1:1).
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It is important to note here that the eccentrically confined or partially confined 
Lam and Teng as well as Mander models follow the same formats described for cir-
cular columns in Sections 7.3.2.1 and 7.3.2.2.

7.3.4.1  Numerical Procedure
The column cross section is divided into a finite number of thin filaments, as seen in 
Figure 7.19a. The force and moment of each filament is calculated and stored. The bars 
are treated as discrete objects in their actual locations (Figure 7.19b). The advantage 
of that is to precisely calculate the internal forces induced by steel bars and concrete 
filaments in the column cross section. The cross section analyzed is loaded incremen-
tally by maintaining a certain eccentricity between the axial force P and the resultant 
moment MR. Since increasing the load and resultant moment causes the neutral axis and 
centroid to vary nonlinearly, the generalized moment-of-area theorem is devised. The 
method is developed using an incremental iterative analysis algorithm, a secant stiffness 
approach, and proportional or radial loading. It is explained in the following steps:

	 1.	Calculating the initial section properties:
Elastic axial rigidity EA:

	
∑∑ ( )= + −EA E w t E E Ac i i s c si

ii

	 (7.96)

	 where

		  Ec = initial modulus of elasticity of the concrete
		  Es = initial modulus of elasticity of the steel bar

The depth of the elastic centroid position from the bottom fiber of the section 
Yc and from the left side of the section Xc

 
	 (a)	 (b)

FIGURE 7.19  Geometric properties of concrete filaments and steel rebars.
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∑ ∑( ) ( ) ( )
=

− + − −

Y

E w t H Y E E A H Y

EA
c

c i i i

i

s c si si

i 	 (7.97)

	

∑∑
=

− + − −

X

E w t B X E E A B X

EA
c

c i i i s c si si

ii

( ) ( ) ( )

	 (7.98)

	 where Yi and Ysi are measured from the top extreme fiber, and Xi and Xsi are 
measured from the rightmost extreme fiber, as seen in Figure 7.19.

	 Elastic flexural rigidities about the elastic centroid EIX, EIy and EIxy

	
∑ ∑= − − + − − −EI E w t H Y Y E E A H Y Yx c

i

i i i c s

i

c si si c( ) ( ) ( )2 2 	 (7.99)

	
∑ ∑= − − + − − −EI E w t B X X E E A B X Xy c

i

i i i c s

i

c si si c( ) ( ) ( )2 2 	 (7.100)

	

∑

∑

( )

( )

= − − − −

+ − − − − −

EI E w t H Y Y B X X

E E A H Y Y B X X

xy c

i

i i i c i c

s

i

c si si c si c

( )

( ) ( ) 	 (7.101)

		  Typically the initial elastic Yc = H/2, Xc = B/2, and EIxy = 0
		  The depth of the geometric section centroid position from the bottom 

and left fibers of the section YG, XG is

	
=Y

H
G

2
	 (7.102)

	
=X

B
G

2
	 (7.103)

	 2.	Defining the eccentricity e, which specifies the radial path of loading on the 
interaction diagram (Figure 7.20), and also defining the angle α in between 
the resultant moment GMR and GMX

	 3.	Defining the loading step ΔGP as a small portion of the maximum load, and 
computing the axial force at the geometric centroid,

	 = +GP GP GPnew old 	 (7.104)
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	 4.	Calculating the moment GMR about the geometric centroid.

	

= = ×e
GM
GP

GM e GPR
Rand 	 (7.105)

	 = αGM GMx R cos 	 (7.106)

	 = αGM GMy x tan 	 (7.107)

	 5.	Transferring the moments to the inelastic centroid and calculating the new 
transferred moments TMX and TMY

	 = + −TM GM GP Y Yx x G c( ) 	 (7.108)

	 = + −TM GM GP X Xy y G c( ) 	 (7.109)

		  The advantage of transferring the moment to the position of the inelastic 
centroid is to eliminate the coupling effect between the force and the two 
moments, since EAMx = EAMy = 0 about the inelastic centroid (Figure 7.21).

	

=

ε
φ

φ

GP
TM

TM

EA
EI EI

EI EI
x

y

x xy

xy y

x

y

0 0
0

0

0

	 (7.110)

	 6.	Finding curvatures ϕx and ϕy by inverting Equation (7.110):

	
φ =

β
× −

β
×

TM
EI

TM
EIx

x
y

y
xy2 2 	 (7.111)
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FIGURE 7.20  Radial-loading concept.
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φ =

β
× −

β
×

TM
EI

TM
EIy

y
x

x
xy2 2 	 (7.112)

	 β = −EI EI EIx y xy
2 2 	 (7.113)

	 7.	Strain at the inelastic centroid ε0, the extreme compression fiber strain εec, 
and strain at the extreme level of steel in tension εes are found as follows:

	
ε =

GP

EA
0

	 (7.114)

	 ε = ε + φ − + φ −H Y B Xec x c y c( ) ( )0 	 (7.115)

	 ε = ε − φ − − φ −Y Xes x c y c( Cover) ( Cover)0 	 (7.116)

		  where the cover is up to the center of the bars
	 8.	Calculating strain εci and corresponding stress fci in each filament of con-

crete section by using the Lam and Teng or the Mander model.

	

( ) ( )

( ) ( )
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FIGURE 7.21  Moment transferring from geometric centroid to inelastic centroid.
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	 9.	Calculating strain εsi and corresponding stress fsi in each bar in the given 
section by using the steel material model of elastic–perfectly plastic.
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( ) ( )
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2 2 	 (7.118)

	 10.	Calculating the new section properties: axial rigidity EA; flexural rigidities 
about the inelastic centroid EIx, EIy, EIxy; moment of axial rigidity about 
inelastic centroid EAMx, EAMy; internal axial force Fz; and internal bending 
moments about the inelastic centroid M0x, M0y:
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i i i i i
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	 (7.122)
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i

i i i i

i

i i i 	 (7.127)
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	 where

		  Eci = secant modulus of elasticity of the concrete filament = 
ε
fci

ci
		  Esi = secant modulus of elasticity of the steel bar = 

ε
fsi

si

	 11.	Transferring back the internal moment about the geometric centroid

	
= − −GM M GP Y Yx x G c( )0 0 	 (7.128)

	 = − −GM M GP X Xy y G c( )0 0 	 (7.129)

	 12.	Checking the convergence of the inelastic centroid

	 = ×TOL EAM EA Yx x c/ ( ) 	 (7.130)

	 = ×TOL EAM EA Xy y c/ ( ) 	 (7.131)

	 13.	Comparing the internal force to applied force and the internal moments to 
applied moments, and making sure the inelastic centroid converges:

	 − ≤ × −GP Fz 1 10 5 	 (7.132)

	
− ≤ × − ≤ ×− −GM GM GM GMx x y y1 10 and 1 100

5
0

5 	 (7.133)

	
≤ × ≤ ×− −TOL TOLx y1 10 and 1 105 5

 
	 (7.134)

If Equations (7.132), (7.133), and (7.134) are not satisfied, the location of the inelas-
tic centroid is updated by EAMx/EA and EAMy/EA, and steps 5 to 12 are repeated 
until Equations (7.132), (7.133), and (7.134) are satisfied.

	
= +Y Y

EAM

EA
c c

x
new old 	 (7.135)

	
= +X X

EAM

EA
c c

y
new old 	 (7.136)

Once equilibrium is reached, the algorithm checks for ultimate strain in concrete 
εec and steel εes not to exceed εccu  and 0.05, respectively, and then it increases the 
loading by ΔGP and runs the analysis for the new load level using the latest sec-
tion properties. Otherwise, if εec equals εccu  or εes equals 0.05, the target force and 
resultant moment are reached as a point on the interaction diagram for the amount 
of eccentricity, and angle α used.
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Example 7.3: Analysis

One of the columns that were tested by Memon and Sheikh (2005) is investigated 
in this example. The following are the properties of the column:

Height 12 in. 305 mm
Width 12 in. 305 mm
Clear cover 1 in. 25 mm
rc 0.64 in. 16.26 mm
f ′c 6.19 ksi 42.7 MPa
n × tf 4 × 0.05 in. 4 × 1.27 mm
Ef 2,864.33 ksi 19,761 MPa
εfu 0.0228 0.0228
fyt 66.63 ksi 459.7 MPa
Hoop spacing 11.8 in. 299.7 mm
Hoop diameter #3 9.5 mm
Longitudinal bars 8 #6 (ϕ = 0.77 in.) 8 ϕ 19.6 mm
fy 67.43 ksi 465.2 MPa

Draw the interaction diagram per ACI 440.2R-08 then use KDOT Column Expert.

Solution:

Using Equation (7.7):

=
ε

=
× × × × ×

+
=f

nt E
Dl
f f fe2 2 4 0.05 2864.33 0.586 0.0228

12 12
0.902ksi

2 2

= = >
f
f
l

c

0.902
6.19

0.146 0.08 , stress–strain curve is ascending

FIGURE 7.22  Section of column tested by Memon and Sheikh (2005).
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Point A:

( )
ρ =

× π

×
=s

8 4 0.77
12 12

0.0259
2

( ) ( )

=

−

− + −

− ρ

− ρ
=

−
× − ×

×
−

−

=

A
A

b
h

h r
h
b

b r

Ae

c

c c

g
s

s

1
2 2

3
1

1
[2 (12 2 0.64) ]

3 144
0.0259

1 0.0259

0.454

2 2

2

κ = =
A
A

b
h

a
e

c
0.454

2

κ = =
A
A

h
b

b
e

c
0.454

0.5

		  According to Equation (7.6):

= + × × × =fcc 6.19 0.95 3.3 0.454 0.902 7.47 ksi

ε = × + × × ×
×

=ccu 0.002 1.5 12 0.454 0.146
0.586 0.0228

0.002
0.00674

0.45

		  Following Equation (7.2) with and without ϕ factors:

= × × × − ×
π
× + × ×

π
× =Pn 0.85 7.47 (12 12 8

4
0.77 ) 67.43 8

4
0.77 1141.87 kips2 2

φ = × × =Pn 0.65 0.8 1141.87 593.77 kips

Point B:

=
ε

=
× × × ×

+
=f

nt E
Dl
f f fe2 2 4 0.05 2864.33 0.004

12 12
0.270 ksi

2 2

		  This fl will not be used to determine whether the stress–strain curve is 
ascending or descending since it is computed for eccentric points.

= + × × × =fcc 6.19 0.95 3.3 0.454 0.270 6.574 ksi

= = ε =E Ec t4484.56 ksi, 105.323 ksi, 0.0028272

ε = × + × × × =ccu 0.002 1.5 12 0.454
0.27
6.19

0.004
0.002

0.003649
0.45

= =P Mn B n B709.18 kips, 127.90 kip-ft, ,

Point C:

= =P Mn C n C353.5 kips, 169.8 kip-ft, ,

Point D:

= =P Mn D n D0 kips, 97.37 kip-ft, ,
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By comparing Figures 7.23 and 7.24, it is evident that the ACI 440.2R-08 pro-
cedure is conservative compared to the curve generated by the KDOT Column 
Expert software. This is again attributed to the fact that the ACI 440.2R-08 pro-
cedure ignores the confinement resulting from internal reinforcement, which is 
significant due to the extra diamond-shaped tie that is accounted for by the KDOT 
Column Expert software.

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140 160 180 200

A
xi

al
 F

or
ce

 (k
ip

)

Resultant Moment (kip.ft)

MS3

FIGURE 7.24  Confined interaction diagram according to KDOT Column Expert for 
column MS3 tested by Memon and Sheikh (2005).
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FIGURE 7.23  Confined interaction diagram according to ACI 440.2R-08 for column MS3 
tested by Memon and Sheikh (2005).
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Example 7.4: Analysis

One of the columns that were tested by Darby et al. (2011) is investigated in this 
example (Figure 7.25). The following are the properties of the column:

Height 11.81 in. 300 mm
Width 11.81 in. 300 mm
Clear cover 1 in. 25 mm
rc 1.57 in. 39.88 mm
f ′c 3.625 ksi 25.0 MPa
n × tf 4 × 0.0063 in. 4 × 0.16 mm
Ef 31,030 ksi 214.08 GPa
εfu 0.0145 0.0145
fyt 60 ksi 413.93 MPa
Tie spacing 11 in. 279.4 mm
Tie diameter #3 9.5 mm
Longitudinal bars 4 #8 (ϕ = 0.98 in.) 4 ϕ 24.9 mm
fy 79.75 ksi 550.2 MPa

Draw the interaction diagram per ACI 440.2R-08 then use KDOT Column Expert.

Solution:

Using Equation (7.7):

=
ε

=
× × × × ×

+
=f

nt E
D

l
f f fe2 2 4 0.0063 31030 0.586 0.0145

11.81 11.81
0.796ksi

2 2

= = >
f
f
l

c

0.796
3.625

0.219 0.08 , stress–strain curve is ascending

FIGURE 7.25  Section of column SC2 tested by Darby et al. (2011).
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Point A:

( )
ρ =

× π
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4 4 0.98
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1
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3
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[2 (11.81 2 1.57) ]

3 11.81 11.81
0.0216

1 0.0216
0.633

2 2

2

κ = =
A
A

b
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e

c
0.633

2

κ = =
A
A

h
b

b
e

c
0.633

0.5

		  According to Equation (7.6),

= + × × × =fcc 3.625 0.95 3.3 0.633 0.796 5.2 ksi

ε = × + × × ×
×

=ccu 0.002 1.5 12 0.633 0.219
0.586 0.0145

0.002
0.00938

0.45

		  Following Equation (7.2) with and without ϕ factors,

= × × × − ×
π
× + × ×

π
× =Pn 0.85 5.2 (11.81 11.81 4

4
0.98 ) 79.75 4

4
0.98 843.8 kips2 2

φ = × × =Pn 0.65 0.8 1141.87 438.76 kips

Point B:

=
ε

=
× × × ×

+
=f

nt E
D

l
f f fe2 2 4 0.0063 31,030 0.004

11.81 11.81
0.375 ksi

2 2

		  This fl will not be used to determine whether the stress–strain curve is 
ascending or descending, since it is computed for eccentric points.

= + × × × =fcc 3.625 0.95 3.3 0.633 0.375 4.368 ksi

= = ε =E Ec t3431.85 ksi, 144.49 ksi, 0.0022052

ε = × + × × × =ccu 0.002 1.5 12 0.633
0.375
3.625

0.004
0.002

0.005147
0.45

= =P Mn B n B522.45kips, 95.93 kip-ft, ,

Point C:

= =P Mn C n C259.97 kips, 148.96 kip-ft, ,



209Strengthening of Columns for Confinement

Point D:

= =P Mn D n D0 kips, 86.375 kip-ft, ,

When comparing Figures 7.26 and 7.27, it is evident again that the ACI 440.2R-
08 procedure is more conservative compared to that of KDoT Column Expert 
procedure.
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FIGURE 7.27  Confined interaction diagram according to KDOT Column Expert for col-
umn SC2 tested by Darby et al. (2011).
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FIGURE 7.26  Confined interaction diagram according to ACI 440.2R-08 for column SC2 
tested by Darby et al. (2011).
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Example 7.5: Design

This example is intended to increase the axial load capacity of a rectangular column 
by 20% by means of increasing confinement. The following data describe the column, 
Figure 7.28.

Height 24 in. 610 mm
Width 20 in. 508 mm
Clear cover 1 in. 25 mm
rc 1.2 in. 30.5 mm
f ′c 6.0 ksi 41.39 MPa
tf 0.015 in. 0.381 mm
Ef 33,000 ksi 227.67 GPa
εfu 0.0167 0.0167
fyt 60 ksi 413.93 MPa
Tie spacing 18 in. 457.2 mm
Tie diameter #3 9.5 mm
Longitudinal bars 10 #10 10 ϕ 32 mm
fy 60 ksi 413.93 MPa

Solution:

C

P

P k

f A A A f f

f

fu E fu

existing

nreq d

cc g st st y cc

cc

0.95 0.0167 0.0159

0.8 0.65 0.85 6 (24 20 10 1.27) 60 10 1.27 1635.52 kips

1635.52 1.2 1962.62k

0.8 0.85 ( ) 0.8 0.65 0.85 24 20 12.7

12.7 60

7.584 ksi

*

'

[ ]

( )

ε = ε = × =

φ = × × × × − × + × × =

φ = × =

= φ − + = × × × × −

+ ×

=

20 in

22 in24 in

FIGURE 7.28  Column section of example 7.5.
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1
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0.0265

1 0.0265
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7.584 6.0 0.95 3.3 0.318

1.589 ksi

2 2

=
ε
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=
× × × ×

+

f
nt E

b h

n

l
f f fe2

1.589
2 0.015 33,000 0.586 0.0159

24 20

2 2

2 2

=

= = >

n

f
f
l

c

5.38 plies, use 6 plies

1.589
6.0

0.265 0.08

= = =k
A
A

h
b

b
e

c
0.458 1.2 0.502

0.5

ε = ε +
ε
ε

≤

ε = = × =−

k
f
f

f
E

f

ccu c b
l

c

fe

c

c
c

c
c

1.5 12 0.01

1.71 3 10 0.00232

0.45

5

ε = + × ×
×

= >ccu 0.00232 1.5 12 0.502 0.265
0.586 0.0159

0.00232
0.0104 0.01

0.45

		  f ′cc needs to be adjusted to correspond to 0.01.
		  Recalculate f ′cc based on the original E2 and the new εccu.

=
−

ε
=

−
=

= + ε = + × =

E
f f

f f E

cc c

ccu

cc new c ccu new

7.584 6
0.0104

152.26 ksi

6 152.26 0.01 7.523 ksi

2

_ 2 _

Example 7.6: Analysis

Determine the compression-controlled interaction diagram for the column in 
Example 7.5 without FRP reinforcement. Use the simplified calculation approach. 
Scale the ultimate unconfined interaction diagram to the design diagram using the 
appropriate ϕ factors.
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Solution:

There are three points to determine for the compression-controlled interaction 
diagram:

	 1.	Point A: Pure compression

	

P f A A A f

k

P k

nA c g st st y

nA

0.85 ( ) 0.85 6.0 (480 10 1.27)

10 1.27 60 3145.23

0.65 0.8 3145.23 1635.52

= − + = × × − ×

+ × × =

φ = × × =

	 2.	Point B: Compression + bending when the extreme steel layer has a zero 
strain (Figure 7.29)

	 = + + +P f ba A f A f A fn c s y s s s s0.85 1 2 2 3 3

	

PnB 0.85 6.0 20 0.75 22 3 1.27 60 2 1.27 29,000 0.00182

2 1.27 29,000 0.000909 2112.62

= × × × × + × × + × × ×

+ × × × =

	

c d

a c

22"

1.05 0.05
6000
1000

22 0.75 22" 16.5"1

= =

= β = − × = × =

	 φ = × =Pn 0.65 2112.62 1373.2 kB

	

P e f ba d
a

A f d d A f d d

A f
d d

n c s y s s

s s

0.85
2

2
3

3

1 2 2

3 3

( ) ( )× = − + − + −

+
−

	

× = × × × − + × ×

+ × × × ×

+ × × × =

P en B 0.85 6.0 20 16.5 22
16.5

2
3.81 60 20

2.54 29,000 0.00182
2
3

20

2.54 29,000 0.000909
20
3

29,947.11k-in.

20 in

22 in
24 in 20 in

0.003

0.000909

0.00273

0.00182

e´

e

FIGURE 7.29  Determination of Point B on the unconfined interaction diagram.
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4.175"
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	 3.	Point C: Compression + bending when the balanced behavior is observed 
(Figure 7.30)
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=
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0.00254

0.001

–0.00207

FIGURE 7.30  Determination of Point C on the unconfined interaction diagram.
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Chapter Problems

Problem 7.1
For the rectangular column designed in Example 7.5 with 6 FRP plies for confine-
ment, plot the approximate confined interaction diagram and compare it to the plot of 
Example 7.6 to show the improvement in behavior between the two cases.

Problem 7.2
One of the circular columns that were tested by Eid, Roy, and Paultre (2009) is inves-
tigated in this problem. The following are the properties of the column:

Diameter 11.9 in. 303 mm
Clear cover 1 in. 25 mm
f ′c 7.35 ksi 50.7 MPa
n × tf 2 × 0.015 in. 2 × 0.381 mm
Ef 11,306 ksi 78,000 MPa
εfu 0.013 0.013
fyt 66.1 ksi 456 MPa
Hoop spacing 2.56 in. 65 mm
Hoop diameter #3 9.5 mm
Longitudinal bars 6 #5 6 ϕ 15.9 mm
fy 61.3 ksi 423 MPa

Plot the approximate confined interaction diagram. The experimental pure axial 
compression point is at Pn = 1250 kips. Note that this column is similar to that of 
Example 7.1 except for different f ′c and spiral spacing.

Problem 7.3
One of the circular columns that were tested by Sheikh and Yau (2002) is investi-
gated in this problem. The following are the properties of the column:

Diameter 14 in. 355 mm
Clear cover 1 in. 25 mm
f ′c 6.49 ksi 44.8 MPa
n × tf 1 × 0.039 in. 1 × 0.99 mm
Ef 10,871 ksi 75,000 MPa
εfu 0.013 0.013
fyt 72.5 ksi 500 MPa
Hoop spacing 11.8 in. 300 mm
Hoop diameter #3 9.5 mm
Longitudinal bars 6 #8 6 ϕ 25.4 mm
fy 72.5 ksi 500 MPa
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Plot the approximate confined interaction diagram. The experimental near-balanced 
point is at Pn = 325 kips and Mn = 200 k-ft.

Problem 7.4
One of the rectangular columns (B03-b) that was tested by Bousias et al. (2004) is 
investigated in this problem. The following are the properties of the column, see 
Figure 7.P.1:

FIGURE 7.P.1

Height 9.84 in. 250 mm
Width 19.69 in. 500 mm
Clear cover 2 in. 51 mm
rc 0.52 in. 13.21 mm
f ′c 2.66 ksi 18.35 MPa
n × tf 5 × 0.005 in. 5 × 0.127 mm
Ef 33,350 ksi 230.08 GPa
εfu 0.015 0.015
fyt 41.47 ksi 286.10 MPa
Tie spacing 7.87 in. 200 mm
Tie diameter (ϕ = 0.31 in.) (ϕ = 7.87 mm)
Longitudinal bars 4 (ϕ = 0.71 in.) 4 ϕ 18.03 mm
fy 81.2 ksi 560.2 MPa

Plot the approximate confined interaction diagram. The tension-controlled experi-
mental point is at Pn = 194.625 kips and Mn = 90.036 k-ft. Note that bending is about 
the y axis (α = 90°).

Problem 7.5
One of the square columns (MS6) that was tested by Memon and Sheikh (2005) is 
investigated in this problem. The following are the properties of the column, see 
Figure 7.P.2:
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FIGURE 7.P.2

Height 12 in. 305 mm
Width 12 in. 305 mm
Clear cover 1 in. 25 mm
rc 0.64 in. 16.26 mm
f ′c 6.41 ksi 44.22 MPa
n × tf 3 × 0.05 in. 3 × 1.27 mm
Ef 2,864.33 ksi 19,761 MPa
εfu 0.0228 0.0228
fyt 66.625 ksi 459.65 MPa
Tie spacing 11.8 in. 300 mm
Tie diameter #3 (ϕ = 9.5 mm)
Longitudinal bars 8 (ϕ = 0.77 in.) 8 ϕ 19.56 mm
fy 67.425 ksi 465.2 MPa

Plot the approximate confined interaction diagram. The experimental point near 
balanced failure is at Pn = 569.7 kips and Mn = 211.068 k-ft.
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8 Installation

8.1  OVERVIEW

Installation of an FRP system depends on the manufacturer’s procedure, which 
could vary according to the system. Installation also can vary based on the type and 
condition of the member and the various environmental factors directly impacting 
the installation. Application personnel must be trained by the manufacturer or its 
agent. Deviation from the original procedure developed for a certain system needs 
approval from the manufacturer prior to its acceptance.

8.2  ENVIRONMENTAL CONDITIONS

Conditions related to temperature, moisture, and humidity during installation affect 
the FRP system installed. For example, primers, putty, and adhesive resin cannot be 
applied to cold surfaces. A heat source may be used to heat the surface without con-
taminating it or the uncured FRP system. However, if the temperature is lower than 
specified, the resin may not cure properly, and fiber saturation may be inadequate.

Similarly, applying resin to wet or moist surfaces may affect the curing or fiber 
saturation as well, unless the resin is said to be water or moisture resistant. If mois-
ture gets into the uncured resin, it may create bubbles that could impact the bond 
between the fibers or with the concrete substrate.

8.3  SURFACE PREPARATION AND REPAIR

This is the main key to the success of the FRP system in performing properly to 
strengthen concrete members. Debonding or localized separation of the FRP system 
may take place due to poorly prepared concrete substrate. Detailed guidance should 
be obtained from the FRP manufacturer about surface preparation. However, this 
chapter provides generalized guidelines to the proper repair and surface preparation 
for externally bonded and near-surface-mounted FRP installation.

ACI 440.2R-08 categorized this topic into the following areas:

	 1.	Surface repair
	 Any damage to the surface in terms of spalling, breakage of cover 

material, or unevenness of substrate surface must be repaired prior to 
the installation of the FRP system. Repair using resin material compat-
ible with the substrate and FRP system is expected to restore a proper 
and even surface for FRP installation. The compatibility of the resin 
material with the adhered material and the substrate is critical, as seen 
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in a study by Saadatmanesh and Ehsani (1990), which showed that the 
effectiveness of FRP plates in strengthening beams is highly dependent 
on the selection of the resin adhesive.

	 2.	Crack injection by resin
	 Cracks wider than 0.3 mm (0.01 in.) may negatively impact the 

behavior of FRP-strengthened members by provoking early pre-
mature delaminations or fiber kinking (ACI 440.2R-08), as seen in 
Figure 8.1. Such cracks need to be epoxy-injected prior to surface 
preparation according to ACI 224.1R-07. For more detailed step-by-
step procedure, refer to Reed et al. (2003, 2005). Narrower cracks in 
more aggressive environments need to be sealed to prevent corrosion 
of the main steel reinforcement.

	 3.	Damage caused by corrosion
	 When it is evident that the member to be strengthened has undergone 

corrosion damage, the cover needs to be removed and the corroded bars 
need to be cleaned. The cover must then be repaired prior to applying 
FRP materials to avoid putting the integrity of the system in question, 
as seen in Figure 8.2.

	 4.	Surface preparation
	 Whenever the bond between the substrate and FRP system is critical for 

the load transfer, special attention must be provided to surface prepara-
tion in the so-called bond-critical applications like the flexural or shear 
strengthening of beams, columns, slabs, or walls. This surface prepara-
tion is not so critical for the so-called contact-critical applications that 
have adhesive bonding during installation. A typical application of this 
category is lateral confinement of columns.

•	 Surface preparation for bond-critical application
	 The surface to which the FRP is to be bonded should be free of weak or 

loose material and should be recently exposed to the aggregate level by 
means of grinding or sandblasting (Rasheed et al. 2011; Larson, Peterman, 
and Rasheed 2005). Grinding typically uses a diamond rotary grinder to 
grind the surface until it is roughened to the aggregate level, as seen in 
Figure 8.3.

Concrete Substrate

Shear Crack

FRP Laminate

Normal Stresses

Shear Stresses

FIGURE 8.1  Intermediate crack-induced FRP debonding.
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		  Sandblasting involves the use of a fine-graded silica sand and a high-
pressure air compressor to remove any dirt or other foreign substance 
attached to the concrete surface, leaving a clean, etched surface that FRP 
bonds to easily, as seen in Figure 8.4.

		  The corners in rectangular concrete cross sections should be rounded 
to a minimum of 0.5 in. (13 mm) radius when fibers are wrapped around 
them to avoid any FRP stress concentrations and possible voids between the 
concrete and the FRP system, as seen in Figure 8.5. Putty should be used to 
smooth roughened corners. Obstructions need to be removed prior to FRP 

(b)

(c)

(a)

FIGURE 8.2  Damage caused by corrosion: (a) before repair, (b) after repair prior to 
strengthening, and (c) after strengthening. (Courtesy of Fyfe Inc.)

FIGURE 8.3  Grinding of concrete substrate surface (left) roughened vs. original concrete 
surface (right).
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application. Inside corners and concave surfaces require detailing to main-
tain an intact bond, as seen in Figure 8.6. Dust, dirt, oil, existing coatings, 
and any other bond barrier material must be removed.

		  Bug holes and other voids need to be filled by putty and evened out prior 
to FRP installation. Local out-of-plane variations like form lines must not 
exceed 1/32 in. or 1 mm (ACI 440.2R-08). Such variations may be removed 
by grinding prior to surface preparation or may be evened out using putty if 
the variations are small. The concrete surface must be dry if it is to bond to 
the FRP system.
•	 Surface preparation for contact-critical application

FIGURE 8.4  Surface preparations by sandblasting.

FIGURE 8.5  Rounded beam corners by grinding.
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	 Surface preparation described for bond-critical applications is not 
necessary here. However, surface preparation should enable a con-
tinuous and effective contact surface. Contact surfaces must be flat 
or convex to help engage the FRP system during loading. Surface 
spalls or voids need patching with a compatible repair material. 
Soft materials covering columns, like gypsum plaster, must be 
removed prior to applying the FRP system.

•	 Surface preparation for NSM application
	 A diamond saw is typically needed to cut grooves into the con-

crete cover surface. Existing steel needs to be kept intact during 
the groove making. The cut grooves should leave sound concrete 
surfaces and be free of loose materials that prohibit a good bond. 
The grooves should be dry and should be completely filled with 
resin. Once the FRP reinforcement is placed into the groove, the 
extra adhesive resin needs to be scraped off. This resin is specified 
by the NSM manufacturer.

	 5.	Resin mixing
	 Resins are best to be mixed by hand stirring in disposable plastic pots. 

However, small electric mixing blades may be used for stirring if clean-
ing them afterwards is not difficult or time consuming. Mixing should 
be in small quantities to make sure that the resin can be applied within 
its pot life. Once the pot life is exceeded, the mixed resin should be dis-
carded, since it becomes very viscous to the point that it can no longer 
effectively saturate the fibers.

		  All resin parts should be mixed in the proper ratio prescribed by 
the manufacturer until the mix is uniform. Resin parts are typically 
color coded so that proper mixing is indicated by the removal of color 
streaks. All mixing factors need to be provided by the manufacturer 
(mixing proportions, methods, time, etc.).

	 6.	 Installation of FRP system
	 A generic schematic showing the sequence of FRP layers installed is 

presented in Figure 8.7.

T R

T
T

T

R

FIGURE 8.6  Inside corners and concave surfaces needing extra detailing.
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	 a.	 Primer and resin putty
Primer is the first coat to be applied to the substrate concrete surface 

using a paint roller. The primer is immediately followed by resin 
putty that is used to fill in small bug holes on the concrete surface.

	 b.	 FRP sheet placement
	 Before the primer and resin putty are completely allowed to cure, the first 

layer of the saturating resin is generously applied to the surface using a 
paint roller, as shown in Figure 8.8. Then a sheet of fibers is pressed into 
the saturating resin or adhesive with a ribbed aluminum or plastic roller to 
prevent air pockets from forming under the fiber sheet.

		  Consecutive layers of saturating resin or adhesive and of fiber sheets 
should be applied before completely curing the existing saturant. ACI 
440.2R-08 recommends inter-layer surface preparation by light surface 
sanding or using solvent if previous layers are fully cured. The recommen-
dation of the FRP system manufacturer is important.

	 c.	 Precured laminate placement
	 Precured laminates are typically bonded to concrete surfaces 

using the manufacturer’s recommended adhesive. Adhesive 
should be uniformly applied to the bonding surface to main-
tain an even interface. The precured laminates themselves 
should be clean and free of dust and should be pressed against 

Concrete Substrate

Primer
Putty

1st resin coating

FRP Sheet 2nd resin coating

FIGURE 8.7  Wet lay-up process and layers.

FIGURE 8.8  Applying resin to FRP with a paint roller (left) and clearing the air pockets 
with a wooden roller (right).
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the uncured adhesive in such a way as to roll out all entrapped 
air. Surface preparations described earlier are needed prior to 
applying the adhesive layer.

	 d.	 NSM bar placement
	 Grooves are cut to place NSM rectangular or circular bars 

into the cover part of the section. Grooves are dimensioned as 
shown in Figure 8.9 to allow enough adhesion around the bars. 
Surface preparations must be performed as described earlier. 
The manufacturer of the NSM system should be consulted on 
the type of adhesive to use.

	 7.	Alignment of the FRP sheets
	 FRP sheets should be properly aligned with the beam axis. Deviation 

from the intended fiber angle orientation may lead to significant reduc-
tion in modulus and strength for angle differences as small as 5° (ACI 
440.2R-08). Fabrics and fiber sheets should be carefully placed to 
maintain fiber straightness. Any kinks or folds in fibers during installa-
tion may adversely affect the performance, so these should be reported 
to the design engineer (ACI 440.2R-08).

	 8.	Curing of resins
	 This is a temperature-dependent and time-dependent process. For res-

ins cured at room or ambient temperature, curing may take several days 
for most of the cross linking to take place. For resins cured at higher 
temperature levels, resin must be kept at a certain temperature for a 
certain time span. The manufacturer’s recommended curing process 
should be carefully followed without deviations. Curing should be visu-
ally inspected, and problems with curing due to expired resins beyond 
their shelf life should be reported to the designer.
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